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a  b  s  t  r  a  c  t

In  the  context  of linear  multi-factor  models,  this  study  proposes  an  egalitarian,  optimal  and  unique
procedure  to  find  orthogonalized  factors,  which  also  facilitates  the  decomposition  of  the  coefficient  of
determination.  Importantly,  the  new  risk factors  may  diverge  significantly  from  the  original  ones.  The
decomposition  of  risk  allows  one  to  explicitly  examine  the  impact  of  individual  factors  on  the  return
variation  of  risky  assets,  which  provides  discriminative  power  for factor  selection.  The procedure  is  experi-
mentally  robust  even  for  small  samples.  Empirically  we  find  that even  though,  on average,  approximately
eighty  (sixty-five)  percent  of  style  (industry)  portfolios’  volatility  is explained  by the  market  and  size
factors,  other  factors  such  as  value,  momentum  and  contrarian  still play an  important  role  for  certain  port-
folios.  The  components  of systematic  risk, while  dynamic  over  time, generally  exhibit  negative  correlation
between  market,  on  one  side,  and  size,  value,  momentum  and  contrarian,  on the  other  side.

© 2013 The Board of Trustees of the University of Illinois. Published by Elsevier B.V. All rights reserved.

1. Introduction

Under the traditional single-factor Sharpe (1964) and Lintner
(1965) Capital Asset Pricing Model (CAPM), the market beta cap-
tures a stock’s systematic risk for all rational, risk-averse investors.
Therefore, a decomposition of the market beta is sufficient to
break down the systematic risk of a stock.2 For example, Campbell
and Vuolteenaho (2004) break the market beta of a stock into a
‘bad’ component, that reflects news about the market’s future cash
flows, and a ‘good’ component, that reflects news about the mar-
ket’s discount rates. In an earlier paper, Campbell and Mei  (1993)
show that the market beta can be decomposed into three sub-
betas that reflect news about future cash flows, future real interest
rates and a stock’s future excess returns, respectively. Acharya
and Pedersen (2005) develop a CAPM with liquidity risk by divid-
ing the market beta of a stock into four sub-betas that reflect
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2 According to the CAPM, the systematic risk is measured as (ˇj�RM)2. Since the

market factor is the only priced risk factor faced by all investors, ˇj is sufficient to
determine the systematic risk.

the impact of illiquidity costs on the systematic risk of an asset.
Researchers frequently apply decompositions of the market beta to
examine the size and/or book-to-market anomalies. Although beta-
decompositions are useful to describe the structure and source of
systematic variation of returns on risky assets, they are complicated
under multi-factor frameworks. For instance, Campbell and Mei
(1993) show that one complication is due to the possible covari-
ance between the risk price of one factor and the other factors,
which prevents identifying a neat linear relationship between the
overall beta of an asset and its beta of news about future cash flows.

The purpose of this paper is to develop an optimal procedure
to identify the underlying uncorrelated components of common
factors, by a simultaneous and symmetric orthogonal transforma-
tion of sample data, such that the linear dependence is removed
and the systematic variation of stock returns becomes decom-
posable. We empirically compare our approach with two popular
orthogonalization methods, Principal Component Analysis (PCA)
and the Gram-Schmidt (GS) process, and unsurprisingly find that
our technique has the essential advantage of maintaining maxi-
mum  resemblance with the original factors.3

3 For instance, Baker and Wurgler (2006, 2007) employ PCA to develop measures
of investor sentiment, shown to have significant effects on the cross-section of stock
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In the past two decades, one of the most extensively researched
areas in finance has concentrated on alternative common risk
factors, in addition to market risk, that could characterize the
cross-section of expected stock returns. Fama and French (1992,
1993, 1996, 1998) document that a company’s market capitaliza-
tion, size, and the company’s value, which is assessed by ratios
of book-to-market (B/M), earnings to price (E/P) or cash flows to
price (C/P), together predict the return on a portfolio of stocks with
much higher accuracy than the market beta alone, or the tradi-
tional CAPM.4 In addition to the size and value effects, Jegadeesh
and Titman (1993), Jegadeesh and Titman (2001), Rouwenhorst
(1998), and Chan, Jegadeesh, and Lakonishok (1996) report that
short-term past returns or past earnings predict future returns.
Average returns on the best prior performing stocks (i.e., the win-
ners) exceed those of the worst prior performing stocks (i.e., the
losers), attesting the existence of momentum in stock prices. Con-
versely, De Bondt and Thaler (1985, 1987) detect a contrarian effect
by which stocks exhibiting low long-term past returns outperform
stocks with high long-term past returns. De Bondt and Thaler (1985,
1987), Chopra, Lakonishok, and Ritter (1992), and Balvers, Wu,  and
Gilliland (2000) suggest a profitable contrarian strategy of buying
the losers and shorting the winners.

Consequently, for the determination of the return generating
process for risky assets, one needs to consider more than just the
market risk factor. For this reason, multi-factor market models have
been widely employed by both academics and practitioners. Under
the multi-factor framework, the expected excess return on a risky
asset is specified as a linear combination of beta coefficients and
expected premia of individual factors. Fama and French (1993)
emphasize that, if there are multiple common factors in stock
returns, they must be in the market return, as well as in other
well-diversified portfolios that contain these stocks. This indicates
that returns on common factors must be, to some degree, corre-
lated with the market and with each other. Consequently, in a
multiple linear regression setting, although the beta coefficient cor-
responding to an individual factor provides a sensitivity measure
of an asset’s return to the factor’s variation, it is not sufficient to
assess the systematic variation of the asset’s return with respect to
that factor. The volatility of an asset’s return is determined jointly
not only by the betas, but also by the variances and covariances of
the factors’ premia. Therefore, determining the factors’ underlying
uncorrelated components helps us achieve a clearer identification
of the separate roles of common factors in stock returns.

This paper proposes an optimal simultaneous orthogonal trans-
formation of factor returns. The data transformation allows us to
identify the underlying uncorrelated components of common fac-
tors. Specifically, the inherent components of factors retain their
variances, but their cross-sectional covariances are equal to zero.
Moreover, a multi-factor regression using the orthogonalized fac-
tors has the same coefficient of determination, R-square, as that
using the original, non-orthogonalized factors. Importantly, the
coefficient of determination (the ratio of systematic variation to
the overall volatility of a risky asset) is a measure of the system-
atic risk of an asset. Therefore, disentangling the R-square based
on factors’ volatilities and their corresponding betas enables us
to decompose the systematic risk. For that, we need to extract
the core, standalone components of common factors. Fama and
French (1993) clearly demonstrate that since the market return is a

returns. Boubakri and Ghouma (2010) remove the multicollinearity between their
variables using the Gram-Schmidt algorithm.

4 Fama and French (1992, 1996, 1998) show that the investment strategy of buy-
ing the Small – Value stocks and shorting the Big – Growth stocks produces positive
returns.

mixture of the multiple common factors, an orthogonalization of
the market factor is necessary so that it can capture common varia-
tion in returns left from other factors such as size or value. We  argue
that not only the market factor, but all factors need to be orthog-
onally transformed to eliminate any dependence among them.
Although Fama and French’s (1993) orthogonalization procedure
for the market factor is straightforward, it cannot be extended to
eliminate the correlations between all variables in a model, with-
out generating two  related biases. Firstly, similarly to GS, it leaves
one factor (call it leader)  unchanged. Secondly, it is a sequential (i.e.,
order-dependent) procedure. Therefore, a different selection of the
leader or a different orthogonalization sequence generates differ-
ent transformation results. Our method avoids these two biases by
construction.

Using Monte Carlo simulations, we demonstrate that our ortho-
gonal transformation is robust, in that it produces precise estimates
of the population systematic risk even for small samples. By apply-
ing our methodology to some of the Kenneth French’s style and
industry portfolios, we  show empirically that the systematic return
variation can now be unequivocally allocated to the common
factors.5 We  find that, over a time period from January 1931 to
December 2008, the market and size factors are the largest sources
of systematic risk, while other factors such as value, momentum and
contrarian play relatively small roles in stock volatility.

The paper is organized as follows. In Section 2, after explaining
why the systematic risk decomposition is problematic under multi-
factor models, we  present our procedure of symmetric orthogonal
transformation and risk decomposition. In Section 3, we  illustrate
the procedure empirically, using monthly U.S. Research Returns
Data obtained from Kenneth French’s Data Library, for the time
interval January 1931–December 2008. The final section of the
paper provides concluding remarks.

2. Orthogonalization procedure

Suppose a risky asset j’s return generating process is linearly
determined by a set of K common factors (fk), such as market (RM),
size (SMB), value (HML), momentum (Mom),  and long-term reversal
(Rev), as shown in the following general linear factor model.

rjt = ˛j +
K∑
k=1

ˇkj f
k
t + εjt, (1)

where fk are assumed to be uncorrelated with the residual term (εj),
but not with each other. For instance, the market factor is a mix-
ture of the multiple common factors, while the factor-mimicking
portfolios of size, value, momentum and contrarian are all formed
using securities in the same market, and thus their returns are not
uncorrelated.

The systematic return variation (�2
s ) of asset j can then be mea-

sured as

�2
sj

=
K∑
l=1

K∑
k=1

ˇkjˇlj Cov(f k, f l), (2)

while the coefficient of determination, R-square, is the ratio of sys-
tematic variation to total return variation (�2

sj
/�2
j

).
It is important to note that under the multi-factor framework,

systematic risk depends not only on the beta coefficients but also on
the factors’ variance–covariance. Thus, beta coefficients alone are

5 Kenneth French’s Data Library is located at http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data library.html.
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