

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 290-291 (2005) 302-305

www.elsevier.com/locate/jmmm

Observation of solitons in the $S = \frac{1}{2}$ antiferromagnetic chain $[\text{CuPM}(\text{NO}_3)_2(\text{H}_2\text{O})_2]_n$ by ¹³C-NMR

A.U.B. Wolter^{a,b,*}, P. Wzietek^b, D. Jérome^b, S. Süllow^a, F.J. Litterst^a, R. Feyerherm^c, H.-H. Klauss^a

^aInstitut für Metallphysik und Nukleare Festkörperphysik, TU Braunschweig, Mendelssohnstr. 3, Braunschweig 38106, Germany ^bLaboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay Cedex, France ^cHMI, Glienicker Str. 100, 14109 Berlin, Germany

Available online 7 December 2004

Abstract

We present $^{13}\text{C-NMR}$ investigations of the $S=\frac{1}{2}$ antiferromagnetically coupled Heisenberg chain system $[\text{CuPM}(\text{NO}_3)_2(\text{H}_2\text{O})_2]_n$, $(\text{PM}=\text{C}_4\text{N}_2\text{H}_4=\text{pyrimidine})$. For this material, as result of the Dzyaloshinskii–Moriya interaction and an alternating g-tensor, the ground state is characterized by a giant static spin canting and an anisotropic magnetic field-induced spin excitation gap. We measured the spin–lattice relaxation rate $1/T_1$ at three inequivalent carbon sites in the pyrimidine molecule as function of temperature. From these studies we deduce the magnetic excitation spectrum of copper pyrimidine dinitrate at a constant applied magnetic field of 9.3 T. The experimental data are discussed in context with recent ESR investigations, which have been interpreted in terms of breather, soliton and multi-particle excitations based on the quantum sine-Gordon field theory.

PACS: 75.10.Pq; 76.60.Es

Keywords: Heisenberg chain; Dzyaloshinskii-Moriya interaction; NMR relaxation; Solitons

Quantum fluctuations, which are significantly enhanced in systems with reduced dimensionality, give rise to a variety of strongly correlated states and make low-dimensional magnets an ideal ground for testing various theoretical concepts [1,2]. A well-known example is the uniform $S=\frac{1}{2}$ antiferromagnetic Heisenberg chain with a gapless continuum of spin excitations, since it is exactly solvable using the so-called Bethe ansatz equations [3,4].

E-mail address: an.wolter@tu-bs.de (A.U.B. Wolter).

For $S = \frac{1}{2}$ antiferromagnetic Heisenberg chains on low symmetry crystallographic lattices, such as copper pyrimidine dinitrate, $[\text{CuPM}(\text{NO}_3)_2\cdot(\text{H}_2\text{O})_2]_n$ (CuPM), it has been demonstrated that the residual spin-orbit coupling fundamentally changes the magnetic properties. As a consequence, the Dzyaloshinskii-Moriya interaction D and an anisotropy of the g-tensor have to be taken into account [5,6]. These contributions lead to an effective staggered field h perpendicular to the external field H, with $h = \text{const} \cdot H$ resulting in an additional contribution to the susceptibility $\propto 1/T$, a giant spin canting, and an anisotropic magnetic field-induced spin gap $\Delta \propto H^{2/3}$ [6]. The gapped phase can be effectively described by the quantum sine-Gordon field theory and the excitation spectrum is represented by

^{*}Corresponding author. Institut für Metallphysik und Nukleare Festkörperphysik, TU Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany. Tel.: +49 531 391 5108; fax: +49 531 391 5129.

solitons, antisolitons and their bound states called breathers [5,7]. In fact, recent ESR investigations on CuPM identified signatures of three breather branches and a soliton, as well as several multi-particle excitation modes [8].

In this paper, we present the spin-lattice relaxation rate $1/T_1$ as a function of temperature on $[\text{CuPM}(\text{NO}_3)_2\cdot(\text{H}_2\text{O})_2]_n$ at a constant external magnetic field of 9.3 T at three inequivalent carbon sites in the pyrimidine molecule. Four distinct spin excitation modes are extracted from a fit of the data using a superposition of various activation laws. Our results are discussed in context with recent ESR data from Ref. [8]. Concerning the four modes resolved in NMR we find very good agreement between the two experimental techniques.

Single crystals of [CuPM(NO₃)₂·(H₂O)₂]_n have been grown as described previously [6]. The Cu ions form uniformly spaced chains running parallel to the short *ac*-diagonal of the monoclinic crystal structure. The intrachain magnetic pathway is provided by the pyrimidine ring C₄N₂H₄, which connects two neighboring Cu ions as shown in Fig. 1. From a single crystal magnetization study a magnetic exchange parameter $J/k_B = 36.3(5)$ K along the chain is derived [6,9].

As is evident from the structure plot of PM, for a given field in the plane perpendicular to the molecule, i.e. in the *ac*-plane, the carbon sites C1, C2 and C3 are inequivalent, with additional hyperfine coupling to the nearest proton $(I = \frac{1}{2})$. In consequence, in a NMR study, we expect to observe three sets of double pairs of lines from the three inequivalent sites and the line splitting due to the hydrogen spin direction [10].

Fig. 1. Logarithmic plot of the spin–lattice relaxation rate $1/T_1$ against 1/T at the three inequivalent $^{13}\mathrm{C}$ sites in CuPM with the external field $H\parallel$ to the Cu chains. Here, each dashed line indicates a single activated behavior. In the inset a schematic picture of the different carbon sites C1, C2 and C3 in the pyrimidine molecule is displayed.

The NMR measurements were carried out using a home-built spectrometer in quadrature detection and a superconducting magnet operating at a constant field of 9.3 T. For the experiments the sample was oriented along the Cu chain direction and placed inside a teflon tube. Nuclear spin–lattice relaxation rates were measured by a progressive saturation method and an echo subsequence at the end using phase cycling to cancel parasitic ¹³C signal from the teflon tube around the sample.

The spin-lattice relaxation rate $1/T_1$ as function of temperature is shown in Figs. 1 and 2. Here, each set of hyperfine doublets is represented by its averaged value for $1/T_1$. The spin-lattice relaxation rate can be expressed in terms of the imaginary part of the dynamical susceptibility as [11]

$$\frac{1}{T_1} = \frac{\gamma_{\rm n}^2 k_{\rm B} T}{2\mu_{\rm B}^2} \sum_{q} A(q)^2 \, \frac{\chi''(q,\omega)}{\omega_{\rm n}},\tag{1}$$

where γ_n is the nuclear gyromagnetic ratio of $^{13}\mathrm{C}$ and A(q) is the q-dependent form factor. ω_n is the nuclear Larmor frequency. Direct spin excitation processes involving excitations from the ground state to the soliton and breather branches do not contribute to $1/T_1$ since the frequencies of such processes are much larger than the nuclear Larmor frequency ω_n . The only relevant relaxation channels in 1D spin-chain systems with a spin gap are those which are quasielastic and involve a scattering between two excited states. Taking into account only these processes [12] and following the quantum sine-Gordon model which predicts multiple spin excitation modes, the scattering process leads to a

Fig. 2. The temperature dependent spin–lattice relaxation rate $1/T_1$ in $[\text{CuPM}(\text{NO}_3)_2(\text{H}_2\text{O})_2]_n$ with the external field $H \parallel$ to the Cu chains. The solid lines are fits to Eq. (2) in (i) the whole temperature range $5 \text{ K} \leqslant T \leqslant 120 \text{ K}$ for C1 and C2 and (ii) $18 \text{ K} \leqslant T \leqslant 120 \text{ K}$ for site C3, respectively.

Download English Version:

https://daneshyari.com/en/article/9834301

Download Persian Version:

https://daneshyari.com/article/9834301

<u>Daneshyari.com</u>