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Abstract

Deformation arising in a ferrogel sample in response to applied uniform magnetic field is investigated assuming that

ferrogel is an isotropic linearly magnetizable medium. For small deformations the results on solid and hollow spherical

samples are presented. We find that compliance of a hollow sphere (vesicule) to elongation grows with diminution of the

wall thickness; this is accompanied by the decrease of the internal volume of the vesicule.
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Ferrogels make a challenging class of soft magnetic

matter [1–3]. These materials are distinguished by low-

values of their elastic moduli (104 Pa and less) so that

specific deformations induced by moderate magnetic fields

reach from tens to hundreds percent. This smart behavior

ensures for ferrogels wide technological prospects.

Designing a process or device employing such media,

one needs to predict the field-induced deformation of a

particular ferrogel sample. This means solving a coupled

elastic/magnetostatic problem. By now only a few simple

cases have been examined. Our work presents the results

of evaluation of the magnetodeformational effect

(MDE) in solid and hollow spheroidal ferrogel bodies,

where the constituting material is modeled by a

continuum obeying the Hook elasticity and the Lange-

vin magnetization laws.

In the very first attempts on MDE [4,5] exclusively the

case of a solid (non-hollow) spherical body was studied.

Moreover, an essential assumption was that a sample,

being a sphere at H ¼ 0; on application of a uniform

field stretches into a spheroid. Later on an exact solution

was found [6], which established that under field a

sphere assumes a shape that is axisymmetrical about H
but not a spheroidal one. The contour of the cross-

section of this body is rendered by a cubic equation. In

the parametric form in the (r;z) plane of a cylindrical
coordinate framework (H||Oz) it writes

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 2P2Þ=3

p
1þ að4P2 � 3Þ½ �; (1)

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2P2Þ=3

p
1þ að4P2 þ 6Þ½ �;

where P2(cos W) is the second Legendre polynomial of
the meridional angle, and a is a parameter proportional
to the squared magnetization so that at the initial state

where a ¼ 0 Eq. (1) unite into r2 þ z2 ¼ 1:
The elongation effect is quadratic in the field strength,

and so we define the initial MD susceptibility of a

sphere as

k ¼
G

w2
d�

dðH ðiÞÞ
2
¼ G

d�

dM2

����
H!0

¼
4p=15 ðapprox:Þ;

20p=57 ðexactÞ:

(
ð2Þ
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Here �; see also definition (7) below, is the elongation
of the body scaled with the outer radius of the sphere

and G is the elastic modulus. Product of the initial

magnetic susceptibility w and the magnetic field inside
the body H(i) equals its initial magnetization M. As

Eq. (1) shows, the exact result exceeds the approximate

one by about 30%.

Recently the approach, in its approximate and exact

forms, was extended [7] to the situation, where the initial

state H ¼ 0 of a ferrogel body is an arbitrary ellipsoid

of revolution. The configurations assumed under field

are calculated numerically and shown to never be

spheroidal.

An interesting new problem occurs when a hollow

ferrogel body is considered. For us it was inspired by

Ref. [7], where self-assembling of shells consisting of

polymers with embedded ferrite nanoparticles is re-

ported. Accordingly, for our model study we take a

sphere with an empty concentric spherical cavity, see

Fig. 1. Medium (1) is the carrier fluid, object (2) is a

hollow sphere (vesicule) made of a homogeneous

linearly magnetizable ferrogel with Hookean elasticity,

and (3) is the carrier fluid, which occupies the cavity. For

definiteness, we take that in the vesicule wall there

virtually exists a thin channel so that the cavity may

exchange its content with the outer fluid surrounding it.

Therefore, conservation of the internal volume of the

vesicule is not required.

Denoting the applied uniform field as H0 and

introducing the induced one in the usual way as

H ¼ H0 �rc; Dc ¼ 0; (3)

and assuming the linear magnetization law M ¼ wH for

the ferrogel one gets the boundary conditions for Eq.

(3):

ð1þ 4pwÞ
@cð2Þ

@n
�

@cð1Þ

@n
¼ 4pwH0 cos W;

cð2Þ
¼ cð1Þ; ð4Þ

ð1þ 4pwÞ
@cð2Þ

@n
�

@cð3Þ

@n
¼ 4pwH0 cos W;

cð2Þ
¼ cð3Þ:

The corresponding elasticity equations are

r 
 Tþ 1=2wrðH2Þ ¼ 0; T ¼ lI1ðeÞgþ 2Ge; (5)

e ¼ 1=2 rt þ rtT
� �

; m 
 TjGi
¼ 2pM2

nm
��
Gi
:

Here T, e and g are the stress, deformation and unit

tensors, respectively; u and n are the point displacement
and surface normal vectors, l and G are Lamé constants;

Gi at i ¼ 1; 2 are the actual external and internal surfaces
of the body. With the aid of the virtual work principle

we pass to a simplified (weak) formulation of the

elasticity equations.

The magnetostatic problem is solved with respect to

the non-perturbed configuration of the particle in the

form of a superposition of spherical functions as

cð1Þ
¼ ðAir þ Bi=r2Þ cos W; i ¼ 1; 2; 3;

where the coefficients are found from the boundary

conditions and the conditions at infinity. This yields

cð1Þ
¼
4pbwH0 cos W

r̄2
ð1� q3Þð3þ 8pwÞ

32p2w2ð1� q3Þ þ 9ð1þ 4pwÞ
;

cð2Þ
¼
4pbwH0 cos W

r̄2

�
8pwr̄3ð1� q3Þ � 3ð1� r̄3Þ

32p2w2ð1� q3Þ þ 9ð1þ 4pwÞ
; ð6Þ

cð3Þ
¼

32p2br̄ð1� q3Þw2H0 cos W
½32p2w2ð1� q3Þ þ 9ð1þ 4pwÞ�

;

where r̄ ¼ r=b and q ¼ a=b are the dimensionless radial

coordinate and the cavity radius, respectively.

The elasticity problem with allowance for a non-

uniform stress distribution is solved by the finite-element

method, whereas the distribution of magnetization is

determined with the aid of Eqs. (6). Finally, the external

elongation parameter defined as

eðextÞl ¼
uðr ¼ b; W ¼ 0Þ

b
; (7)

see Fig. 1, is evaluated. Setting r ¼ a we introduce

similarly to Eq. (7) the ‘‘internal’’ elongation parameter

eðintÞl at the inner side of the pole. Similarly, at the

equator of the body (r ¼ b; a; W ¼ p=2) the external and
internal contraction parameters et are introduced. Those

two pairs of � are also combined to give the polar and
equatorial dimensionless increments of the wall thick-

nesses, dl and dt. For example,

dl ¼ ð1� qÞ�1 �extl � q�intl

� �
; dt ¼ ð1� qÞ�1 �extt � q�intt

� �
:

All those characteristics calculated as the functions of

the reduced internal cavity radius are shown in Figs. 2

and 3. The numeric values of the material parameters

used for the calculation are: w ¼ 1; H0=
ffiffiffiffi
G

p
¼ 0:3: For

technical reasons in numeric work the material is treated
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Fig. 1. Schematic representation of a ferrovesicule, i.e., a

hollow sphere made of a ferrogel medium and both surrounded

and filled with a non-magnetic fluid in the field-free (i.e., initial)

and deformed due to a uniform field H states.
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