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Abstract

A theoretical and experimental investigation of a symmetrical arrangement of N quasi-two-dimensional magnetic

fluid drops in an external field is carried out. We observe that when the distance between drops is smaller than about

one drop diameter, the interactions between drops have a dramatic impact on the pattern formation process. In these

circumstances, the final patterns that form are quite predictable. This predictability can be understood qualitatively by

finding the rotational preference of the drops early in the evolution process using an energy minimization approach. To

investigate the final state patterns, we perform a series of numerical experiments that demonstrate good agreement with

the experiments.
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1. Introduction

When a ferrofluid drop is placed in a Hele–Shaw cell

and subjected to a perpendicular magnetic field, it

undergoes a fingering instability that can lead to a

complex, labyrinthine structure. The formation of these

patterns has been well studied for a single-domain

system but very little work has been done trying to

understand multiple-domain systems. In contrast to the

single-domain situation, the pattern formation process

becomes very predictable. Fig. 1 shows an example of

the final state patterns that can result when the

interactive effects are important and when they are

unimportant.

The physical system to be investigated is comprised of

N equal-sized ferrofluid drops of initial radius R0

contained in a Hele–Shaw cell consisting of two glass

plates separated by a distance h. These drops are

symmetrically arranged at the vertices of a regular N-

sided polygon.

The magnetization M is taken to be collinear with the

applied field and uniform throughout each of the

domains. The magnetic (self) energy for a single domain

can be written as [1]

Emag ¼ 2pM2V � M2h

I
ds

I
ds0 t̂ � t̂

0
FðR=hÞ; (1)

where V is the volume of the drop and

FðxÞ ¼ sinhð1=xÞ þ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

q
: (2)

Here, the integration takes place over the (two-dimen-

sional) boundary of the domain, R ¼ jr� r0j is the
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distance between two points on the contour, and t̂ and t̂
0

are unit tangent vectors at these points.

When considering a multi-domain system, each drop

will contribute this self-energy but there will also be

interaction terms of the form

Eij ¼ �M2h

I
dsi

I
dsj t̂i � t̂jFðRij=hÞ; (3)

where the subscripts now refer to contours on separate

domains. Because we are only interested in how the

interactions influence the pattern formation process, we

focus our attention on the total interaction energy of the

system, given by

Eint ¼
1

2

X
iaj

Eij ¼
X
ioj

Eij : (4)

2. Energetically preferred rotational states

We are interested in finding the preferred energy states

for this system early in the evolution. Thus, we introduce

pure mode disturbances of the form Bi cos½niðyþ aijÞ
;
where the mode number ni indicates the number of

bumps on domain i, and aij is the rotation angle of drop

i with respect to drop j. Linearizing the interaction

energy with respect to the small parameter Bi=R0 then

gives [2]

Eij ¼ I
ð0Þ
ij þ BiAij cos niaij þ BjAji cos njaji (5)

where I
ð0Þ
ij is the interaction energy for two circular

domains and Aij is the amplitude coefficient that depends

on the mode number of the ith drop (ni) and the distance

between drops i and j.

Symmetry dictates that we can, without loss of

generality, focus our attention on a single domain (say,

drop 1). Incorporating only that portion of the

interaction energy that depends on drop 1 and writing

the rotation angles as aij ¼ a12 þ ðj � 2Þp=N ; we find an

expression for the extreme angles a�12 that involves

complicated summations involving the amplitude coeffi-

cients. However, since the interactions do not play a

significant role when the drops are separated by more

than about one drop diameter, it is only the two nearest

neighbors that will affect any particular drop. By

including only nearest-neighbor interactions and using

the fact that A12 ¼ A1N ; we find the following expression
for the extreme angles:

tan n1a�12 ¼ �
sin½ðN � 2Þn1p=N


1þ cos ðN � 2Þn1p=N
� � ; (6)

valid as long as the denominator is nonzero.

To guarantee we have an energetic minimum, we

require the second derivative of the energy (evaluated at

a�12) to be positive. This allows us to write the minimum

energy rotational states for drop 1 as

a�12 ¼ �
N � 2

2N
pþ

lp
n1

; (7)

where l is an integer that satisfies

2l þ 1o
N � 2

N
n1o2l þ 3: (8)

Thus, to determine the preferred orientation of our

system of drops, we first calculate l using Eq. (8) and

then determine the preferred angle of drop 1 from Eq.

(7). The orientation of the other domains can be

obtained by a similar procedure. In our case, since we

assume all of the drops begin with the same initial

radius, it is likely (see Ref. [3]) that all of the drops will

have the same initial perturbation. Thus, for the

remainder of this paper, we will assume that all drops

have the same mode number n.

As an example, suppose we have a configuration with

N ¼ 3 and n ¼ 2: We then find that l ¼ �1 which yields

a�12 ¼ �2p=3: The preferred angles for the other two

drops are then easily obtained by symmetry. Fig. 2

shows the theoretical predictions and the experimental

results for three different configurations. The agreement

between theory and experiment is quite good.
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Fig. 1. Experimental final state patterns when interactions play

an important role (left) and when they are insignificant (right).

Fig. 2. Theoretical preferred states (top) and experimental

realizations (bottom) for three different configurations.
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