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Abstract

This paper compares the relevance of various scaling for the stability study of the Rayleigh–Bénard–Marangoni

extended problem when a ferrofluid layer is submitted to a weak magnetic field normal to it. Some preliminary results

are reported.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider the Rayleigh–Bénard instability for a

ferrofluid submitted to an imposed magnetic field,

introducing a Kelvin force coupling. It is always

unstable with respect to the non-oscillatory instability,

whether heating from above or from below [1–3]. A free

deformable interface introduces explicitly the Marango-

ni instability [1,3]. For a Newtonian fluid layer heated

from below, the linear Rayleigh–Bénard–Marangoni

instability neglects the free surface deformation [1].

For an isothermal ferrofluid layer submitted to a normal

field, exists a specific static instability [2,4], for which the

free surface will not remain flat. Bashtovoi and his

colleagues [3] and Weilepp and Brand [5] combined these

two instabilities. The former considers only non-

oscillatory asymptotic solutions. The later study a layer

whose width is comparable to the capillary length and

did not consider the Kelvin term so that the magnetic

field appears only through the magnetic traction along

the free interface [5]. Both teams consider heating from

below. These are severe restrictions that do not apply to

earlier results of Schwab et al. heated from above [6].

Since there is no prescribed velocity, reference flow

values are deduced only from the prime physical

parameters defining the problem. Then, one defines

a proper scaling, meaningful for the phenomenon

under scrutiny, which identifies also its domain of

validity. Outside, the physical data do not correspond

with the theoretical model. Scaling is thus a delicate

operation [4].
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2. Rayleigh–Bénard inductive or non-inductive cases

An infinite horizontal layer of a ferrofluid of width

d is bordered by a non-magnetic solid, at z ¼ 0: Its
free surface S at z ¼ d : We apply a gradient of

temperature and an exterior magnetic field, both normal

to the unperturbed boundaries. We look only at a weak

magnetic field so that the magnetization is collinear

with the magnetic field M ¼ wH and m0½HþM� ¼ mH:
The magnetization state equation is M ¼ M0ðT0;H0Þ þ

wðH � H0Þ � KðT � T0Þ near to the reference state

[2,3]. The pyromagnetic coefficient K ffi M½aþ 1=T �;
where a is the thermal dilatation coefficient [3]. The

Maxwell equations are quite easy to write [2,3],

since H ¼ rf: In a lot of practical cases, one neglects
the temperature influence on the magnetic field so

that r2f ¼ 0 defines the non-inductive case [3]. On

the contrary, when the magnetic field results from a

magnetic gradient, the inductive assumption gives,

for low fields [2,3], r2f ¼ K 01H � rT where K 0 ¼

K=ð1þ wÞ and 1H ¼ H=H: On both boundaries of

the ferrofluid layer, the normal components of mH and

the tangential component of the magnetic field H are

continuous.

2.1. Momentum balance and Laplace–Marangoni

boundary condition

Let us write in Cartesian coordinates ði; j ¼ 1; 3Þ; the
momentum balance law for an incompressible viscous

ferrofluid, submitted to an exterior magnetic field, in the

gravity field [2,3]

r
Dv

Dt
¼ �rp þ Zr2vþ rgþ m0MrH, (1)

where v is the velocity, p the generalized pressure, r the
density, g ¼ �g1z is the gravity field (positive or

negative to take into account the Rayleigh–Taylor

instability [7]) and Z is the kinematic viscosity. On the
solid–liquid interface, all components of the velocity are

equal to zero. The deformable liquid–gas interface S, is
defined by a Monge equation linking the surface

deformation to the normal component of the velocity.

Along S, one has the Marangoni–Laplace condition

[3,5,8]:

½TL
ij � TG

ij �Snj ¼ �ðrS � nÞlsð1� dilÞ þ dil
@s
@xl

, (2)

where

Tij ¼ � p þ
m0
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H2
n o

dij þ mHiHj

þ Z
@vi

@xj

þ
@vj

@xi

� �
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2.2. The energy balance

For most systems, the energy equation reduces to

the usual form [2,3] of a Fourier equation given by

DT=Dt ¼ kr2T : The density and the surface tension

vary each linearly with temperature, so that r ¼ r0½1�
aðT � T0Þ� and s ¼ s0½1� gðT � TlgÞ� where Tlg is the

reference liquid–gas temperature, s0 is the value of the
surface tension at Tlg and g ¼ �s�10 ðds=dTÞ is usually

taken as a positive quantity. The temperature dependence

will appear only in terms related to all external forces,

that is body forces (given by the buoyancy term rg; and
the Kelvin force m0MrH and the surface forces

(expressed by the Laplace–Marangoni jump of stresses

(2)). The solid is a perfect conductor so that along the

solid–liquid border at z ¼ 0; T ¼ Twall ¼ C: Along the
free deformable liquid–gas surface S, the heat flux is

proportional to the temperature difference between the

surface and the temperature Tgas of the gaseous phase,

thus we have �l½n � rT �S ¼ a½TS � Tgas�; where a is the

heat transfer coefficient and l is the thermal conductivity.

2.3. The non-inductive case [5]

Calling T0; Tgas; the reference temperature at the lower
solid–liquid surface and the one in the gaseous phase, the

steady solution of the Fourier equation is T ¼ T0 � bz

where b ¼ aðT0 � TgasÞ=ðad þ lÞ can be positive or

negative, depending on which interface is the heating

one. We want to study the linear stability of such a

reference motionless state. We use d ; d2=n; rn2=d2; dbn=k;
M0, dM0 to scale the length, time pressure, temperature

magnetization and magnetic potential, respectively. Com-

paring with the classical buoyancy problem [1,3], we now

take into account the Kelvin forces in Eq. (1), leading to

the definition of <; the total Rayleigh number that

expresses the bulk driving forces [3,5]:

< ¼

jgjabd4

kn
þ m0K jrHj 1H �

rT

jrT j

� �
bd4

kZ
. (3)

One could study independently buoyancy and magnetic

field so that < introduces separately the Rayleigh

number [1,2] and the magnetic Rayleigh number [3],

to compare their relative influence. In general, <

is essentially due to the constant outer magnetic

gradient jrHj: The Marangoni number is M ¼

�ð@s=@TÞðbd2=ZkÞ: Because there is a gradient in the

magnetic field, all four quadrants of the f<;Mg plane

are now physically meaningful, even while keeping to a

non-inductive solution.

2.4. The inductive case

The paper of Stiles et al. [9] is taking into

account the inductive approximation, so that the
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