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Abstract

The magnetostatic interaction energy between two magnetic elements of arbitrary shape is presented as a convolution

between the cross-correlation of the particle shapes and the dipolar tensor field. A generalized dipole–dipole interaction

is derived, where the magnetic moments associated with the two particles interact through a magnetometric tensor field,

carrying all the shape information. Example computations are given in order to verify the correctness of the formalism.

The well-known result of the interaction between prisms, employed in most micromagnetic simulations, is correctly

retrieved. The numerical accuracy of the method is also compared to a simple analytical result. Finally, one additional

example computation, two interlaced interacting rings, is presented to show the generality of the formalism.
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1. Introduction

The calculation of the magnetostatic interaction
energy, Em; between multiple uniformly magne-
tized particles of arbitrary shape represents one of
the most difficult components of a typical micro-
magnetic computation. In fact, it requires the
evaluation of a six-fold integral for each pair of
magnetic elements, as each magnetic moment of

the first element interacts with each moment of the
second (a first three-fold integration), and then all
the moments of the first particle must be con-
sidered (another three-fold integration). This must
then be repeated for each pair of magnetic
elements. For a review of the literature on the
topic of magnetostatic energy computations we
refer to Chapters 7 and 11 in Ref. [1]. The six-fold
integrations can be avoided in principle, by
reformulating the equations of micromagnetics in
terms of field Lagrangians [2], but this approach is
not commonly used in contemporary micromag-
netics software.
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Many micromagnetic simulation packages use
rectangular prisms to subdivide the volume of a
magnetic shape, and then employ pre-calculated
coefficients, based on the functions first derived by
Rhodes and Rowlands [3], to compute the pairwise
interactions between all prisms. When a different
shape is needed for the computations, then these
coefficients must be recomputed. For most shapes,
the integrals involved can not be solved analyti-
cally, so that numerical computations must be
used. Simulations of blocking effects and magne-
tostatic interactions in random particle arrays (i.e.,
particles not arranged on a periodic lattice) are
often carried out by truncating the long-range
interactions at an appropriate radius [4]. Ewald
summation schemes are also frequently used [5]. In
dilute dispersions of single domain Fe particles in
an insulating matrix, magnetostatic interactions
were shown to be dominant even at packing
fractions as low as 10% [5]. In such studies, the
actual particle shapes are not taken into account,
and all particles are assumed to behave as point
dipoles [6], an assumption that has been shown to
be inaccurate for small particle separations when
the actual particle shape is properly taken into
account [7]. Magnetostatic interactions can also be
computed indirectly by considering the demagne-
tizing field; in such an approach, the demagnetiz-
ing field at a point in space due to a magnetized
object is computed by dividing this object into
small (cubic) cells, and then summing over all cells.
This procedure is then repeated for all cells in a
second body, so that the interaction energy can be
computed [8].
It is the purpose of this Letter to introduce a

novel theoretical and computational approach
which reformulates the magnetostatic interaction
energy as a convolution product between a
function determined by the shape of the individual
particles, and the dipolar interaction tensor field.
The approach is very general, and permits evalua-
tion (mostly numerical, but in some cases also
analytical) of the shape–shape pair interaction
energy. We begin this Letter with an explicit
derivation of the new formalism, followed by a
series of example computations. We conclude with
the outline of a numerical algorithm for the
computation of the magnetostatic interaction

energy, with a final explicit example: two inter-
laced magnetized rings.

2. Theoretical model

The theoretical approach employs the concept
of the characteristic function or shape function,
DðrÞ; which is a discontinuous function equal to
unity inside the particle and zero outside. For a
particle with a uniform magnetization state, the
magnetization can be expressed as a vector field
MðrÞ ¼ M0m̂DðrÞ; where M0 is the saturation
magnetization and a hat indicates a unit vector.
It was shown in Ref. [9], that the Fourier trans-
form of the shape function, the so-called shape

amplitude DðkÞ; is a continuous function that can
be used to define the demagnetization tensor field
NabðkÞ ¼ DðkÞk̂

a
k̂
b
: We denote vector and tensor

components with Greek superscripts. k̂
a
¼ ka=jkj

is the direction cosine of the a component of k:
The real space representation, NabðrÞ; can be
obtained by a three-dimensional (3D) inverse
Fourier transformation. The shape amplitude is
hence central to the description of the magneto-
static behavior of a uniformly magnetized particle.
It was also shown, in Ref. [7], that the

demagnetization tensor field can be written as the
convolution between the shape function and the
dipolar tensor, DabðrÞ

NabðrÞ ¼ DðrÞ �F�1½k̂
a
k̂
b
� ¼ DðrÞ �DabðrÞ; (1)

where � represents the convolution product, and
F the Fourier transform operator. The dipolar
tensor is defined as

DabðrÞ 	
1

4pr5
½r2dab � 3rarb�; (2)

where r ¼ jrj; and dab is the identity matrix.
Examples of the computation of the demagnetiza-
tion tensor field using this approach were de-
scribed in Refs. [10,11].
Once the demagnetization tensor field (DTF) is

known, then the magnetostatic energy can be
computed by contracting the tensor with respect to
the magnetization unit vector, maNabðrÞmb (a
summation over repeated superscripts is implied),
and integrating over the complete volume of the
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