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Abstract

The magnetostatic interaction energy between two magnetic elements of arbitrary shape is presented as a convolution
between the cross-correlation of the particle shapes and the dipolar tensor field. A generalized dipole—dipole interaction
is derived, where the magnetic moments associated with the two particles interact through a magnetometric tensor field,
carrying all the shape information. Example computations are given in order to verify the correctness of the formalism.
The well-known result of the interaction between prisms, employed in most micromagnetic simulations, is correctly
retrieved. The numerical accuracy of the method is also compared to a simple analytical result. Finally, one additional

example computation, two interlaced interacting rings, is presented to show the generality of the formalism.
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1. Introduction

The calculation of the magnetostatic interaction
energy, En,, between multiple uniformly magne-
tized particles of arbitrary shape represents one of
the most difficult components of a typical micro-
magnetic computation. In fact, it requires the
evaluation of a six-fold integral for each pair of
magnetic elements, as each magnetic moment of
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the first element interacts with each moment of the
second (a first three-fold integration), and then all
the moments of the first particle must be con-
sidered (another three-fold integration). This must
then be repeated for each pair of magnetic
elements. For a review of the literature on the
topic of magnetostatic energy computations we
refer to Chapters 7 and 11 in Ref. [1]. The six-fold
integrations can be avoided in principle, by
reformulating the equations of micromagnetics in
terms of field Lagrangians [2], but this approach is
not commonly used in contemporary micromag-
netics software.

0304-8853/$ - see front matter © 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.jmmm.2004.09.004


www.elsevier.com/locate/jmmm

L2 M. Beleggia, M. De Graef | Journal of Magnetism and Magnetic Materials 285 (2005) L1-L10

Many micromagnetic simulation packages use
rectangular prisms to subdivide the volume of a
magnetic shape, and then employ pre-calculated
coefficients, based on the functions first derived by
Rhodes and Rowlands [3], to compute the pairwise
interactions between all prisms. When a different
shape is needed for the computations, then these
coefficients must be recomputed. For most shapes,
the integrals involved can not be solved analyti-
cally, so that numerical computations must be
used. Simulations of blocking effects and magne-
tostatic interactions in random particle arrays (i.e.,
particles not arranged on a periodic lattice) are
often carried out by truncating the long-range
interactions at an appropriate radius [4]. Ewald
summation schemes are also frequently used [5]. In
dilute dispersions of single domain Fe particles in
an insulating matrix, magnetostatic interactions
were shown to be dominant even at packing
fractions as low as 10% [5]. In such studies, the
actual particle shapes are not taken into account,
and all particles are assumed to behave as point
dipoles [6], an assumption that has been shown to
be inaccurate for small particle separations when
the actual particle shape is properly taken into
account [7]. Magnetostatic interactions can also be
computed indirectly by considering the demagne-
tizing field; in such an approach, the demagnetiz-
ing field at a point in space due to a magnetized
object is computed by dividing this object into
small (cubic) cells, and then summing over all cells.
This procedure is then repeated for all cells in a
second body, so that the interaction energy can be
computed [8].

It is the purpose of this Letter to introduce a
novel theoretical and computational approach
which reformulates the magnetostatic interaction
energy as a convolution product between a
function determined by the shape of the individual
particles, and the dipolar interaction tensor field.
The approach is very general, and permits evalua-
tion (mostly numerical, but in some cases also
analytical) of the shape—shape pair interaction
energy. We begin this Letter with an explicit
derivation of the new formalism, followed by a
series of example computations. We conclude with
the outline of a numerical algorithm for the
computation of the magnetostatic interaction

energy, with a final explicit example: two inter-
laced magnetized rings.

2. Theoretical model

The theoretical approach employs the concept
of the characteristic function or shape function,
D(r), which is a discontinuous function equal to
unity inside the particle and zero outside. For a
particle with a uniform magnetization state, the
magnetization can be expressed as a vector field
M(r) = MymD(r), where M, is the saturation
magnetization and a hat indicates a unit vector.
It was shown in Ref. [9], that the Fourier trans-
form of the shape function, the so-called shape
amplitude D(k), is a continuous function that can
be used to deﬁpeA}ihe demagnetization tensor field
N*#(k) = D(k)kak . We denote vector and tensor
components with Greek superscripts. kK = k* /K|
is the direction cosine of the o component of k.
The real space representation, N*/(r), can be
obtained by a three-dimensional (3D) inverse
Fourier transformation. The shape amplitude is
hence central to the description of the magneto-
static behavior of a uniformly magnetized particle.

It was also shown, in Ref. [7], that the
demagnetization tensor field can be written as the
convolution between the shape function and the
dipolar tensor, D*(r)

NPy =D 7 = Dy 7 (m), (1)

where ® represents the convolution product, and
& the Fourier transform operator. The dipolar
tensor is defined as

() = [P — 3P, )
4mrs

where r=r|, and 0 is the identity matrix.

Examples of the computation of the demagnetiza-

tion tensor field using this approach were de-

scribed in Refs. [10,11].

Once the demagnetization tensor field (DTF) is
known, then the magnetostatic energy can be
computed by contracting the tensor with respect to
the magnetization unit vector, m*N**®)m’ (a
summation over repeated superscripts is implied),
and integrating over the complete volume of the



Download English Version:

https://daneshyari.com/en/article/9834722

Download Persian Version:

https://daneshyari.com/article/9834722

Daneshyari.com


https://daneshyari.com/en/article/9834722
https://daneshyari.com/article/9834722
https://daneshyari.com

