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This paper demonstrates that a conditionally parametric version of a quantile regression estimator is well suited
to analyzing spatial data. The conditionally parametric quantile model accounts for local spatial effects by
allowing coefficients to vary smoothly over space. The approach is illustrated using a new data set with land
values for over 30,000 blocks in Chicago for 1913. Kernel density functions summarize the effects of discrete
changes in the explanatory variables. The CPAR quantile results suggest that the distribution of land values shifts
markedly to the right for locations near the CBD, close to LakeMichigan, near elevated train lines, and alongmajor
streets. The variance of the land value distribution is higher in locations farther from the CBD and farther from the
train lines.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The spatial AR model is the most commonly used alternative to OLS
for spatial data analysis. The model adds spatial lags of the dependent
variable to the set of explanatory variables, i.e., Y = θWY + Xβ + u,
where W is a “spatial weight matrix” with rows that sum to one and
zeros on the diagonals, and θ is a parameter measuring the strength of
the relationship. Themodel can be useful when X does not fully account
for the tendency for the dependent variable to be highly correlated over
space, so that nearby values of Y provide significant explanatory power.
The endogeneity ofWY poses challenges for estimation. Most empirical
applications are based on maximum likelihood estimation of the model
under the assumption of normally distributed errors. Other approaches
are based on instrumental variables (IV) estimation, usually with spa-
tially lagged values of X (such as WX and WWX) as instruments for
WY (e.g., Kelejian and Robinson, 1993; Kelejian and Prucha, 1999).

Several researchers have used the spatial AR model as the basis for
quantile regressions in which both θ and β are allowed to vary across
quantiles (e.g., Kostov, 2009; Liao and Wang, 2012; Zeitz et al., 2008;
Zhang and Leonard, 2014). The estimation procedures used in these
studies follow the IV approaches of either Chernozhukov and Hansen
(2006) or Kim and Muller (2004). Both approaches are analogous to
IV estimation of the standard spatial ARmodel, inwhich spatially lagged
values of X serve as instruments forWY. What differs is that the estimat-
ed coefficients can vary across quantiles.

Typical specifications of the spatial weight matrix are based on first-
order contiguitywhen the data are drawn from geographic units such as
counties or census tracts. Though the approach is used less commonly
for point data, typical specifications are similar in that the spatial
weights are assumed to decline rapidly with distance between observa-

tions. Predicted values are then based on (1) the structuralmodel, Ŷ ¼ θ̂

WY þ Xβ̂; (2) the reduced form, Ŷ ¼ ðI−θ̂WÞ−1
Xβ̂; or (3) a decomposi-

tion into “signal” and “trend” components, Ŷ ¼ θ̂WðI−θ̂WÞ−1
Xβ̂ þ Xβ̂.

Spatial effects generally appear as noise around a spatial trend that
looks much like the predicted values from an OLS regression of Y on X.
I illustrate this point for a representative data set in McMillen (2012),
in which I also argue that a finding of spatial autocorrelation is apt to
be an indication of functional form misspecification or other forms of
model misspecification that are correlated over space. In the example
analyzed in this paper, I find that the signal component dominates the
trend in quantile versions of the spatial AR model to such an extent
that the predictions appear to be little but noise.

InMcMillen (2013), I suggest an alternative to the spatial AR version
of the quantile regressionmodel that is analogous to conditionally para-
metric (CPAR) local linear regression. The estimation procedure in-
volves estimating separate quantile regressions for various target
points, with more weight placed on observations that are close to the
target. Unlike a fully nonparametric approach, the CPAR approach pro-
duces coefficient estimates for the explanatory variables. But unlike
the spatial AR version of quantile regression, the estimated coefficients
vary over space. The CPAR approach is less sensitive to model
misspecification than the fully parametric spatial AR approach, and it
accounts for local variation in an overall spatial trend. The approach is
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well suited for quantile analysis in situations where the distribution of
thedependent variable is, for example, highly skewed in some locations,
tightly clustered in others, while all the time varying smoothly over
space. Moreover, the CPAR approach does not require the specification
of a large (n × n) spatial weight matrix.

In this paper, I illustrate the approach using a new, unique historical
data set. The data set includes land values and geographic coordinates
for more than 30,000 city blocks in Chicago for 1913. One of the central
predictions of urban location theory is that land values should decline
smoothly with distance from the central business district (the “CBD”).
In contrast to previous studies (e.g., Mills, 1969 and McMillen, 1996),
which typically have relatively small sizes, the new data set covers vir-
tually all of Chicago with a very fine level of detail.1 Though the large
samplewould seem to be desirable, it presents difficulties for the spatial
AR version of the model, which requires the specification of an (n × n)
spatial weight matrix. To simplify the estimation of the spatial AR
model, I aggregate the micro data set to averages across city block
groups as defined in the 2000 Census.

The CPAR approach produces a richer set of results than the overly
restrictive spatial AR quantile model. The CPAR quantile results suggest
an interesting pattern in which the distribution of land values shifts
markedly to the right for locations near the CBD, close to LakeMichigan,
near elevated train lines (the “EL”), and along major streets. The vari-
ance of the land value distribution is higher in locations farther from
the CBD and farther from the EL.

The approach used in this paper to illustrate how changes in an ex-
planatory variable affect the overall distribution of the dependent vari-
able is not limited to CPAR estimation procedures. Although most
researchers present results for a limited set of quantile regressions in a
single large table, estimating the regressions atmany different quantiles
implies an entire distribution of estimated values for the dependent var-
iable. The parametric structure of the quantile model makes it easy to
construct counterfactual distributions that shift as the assumed value
of an explanatory variable changes. Like any regression, the direction
of the change in the counterfactual distributions shows the sign of an
explanatory variable's effect on the dependent variable. However,
quantile regressions also show the variable's effect on the overall distri-
bution of the dependent variable — e.g., whether it leads to greater
changes at high or low values of y, or perhaps leads simply to an in-
crease in the variance of the distribution with no effect on the central
tendency. While the counterfactual distribution approach is useful for
any quantile regression analysis, it is particularly useful for spatial anal-
ysis because it allows a very large set of results to be summarized easily
with a series of simple graphs.

2. Spatial AR quantile models

Several authors have used IV versions of quantile regression to esti-
mate spatial AR models. Zietz et al. (2008), Liao and Wang (2012), and
Zhang and Leonard (2014) use an approach proposed by Kim and
Muller (2004) to account for the endogeneity of the spatially dependent
variable,WY. The Kim andMuller approach is a simple two-stage proce-
dure inwhichWY is replaced in the second-stage quantile regression by
the predicted values from a first-stage quantile regression ofWY on the
original explanatory variables, X, and a set of instruments, Z. The same
quantile, τ, is used for both regressions. The Kim and Muller is simply
a two-stage least squares model with quantile regressions used in
place of ordinary least squares (OLS).

Kostov (2009) uses an approach proposed by Chernozhukov and
Hanson (2006) to construct an instrumental variable for WY. The

Chernozhukov and Hanson approach differs from the Kim–Muller ap-
proach in that it does not impose that the same quantile be used in
both stages of the procedure. In the version of the approach used here,

the predicted values ðdWYÞ from an OLS regression of WY on X and Z
are used as an instrument forWY. In the second stage, this instrumental
variable is used as an explanatory variable for a series of quantile regres-

sions of Y− θWY on X and ðdWYÞ. The same quantile, τ, is used for each of
the regressions, while a grid of alternative values is used for θ. The esti-

mated value of θ is the value that produces the coefficient on ðdWYÞ that
is closest to zero. After finding θ̂, the estimated values of β are calculated

by a quantile regression ofY−θ̂WY on X. Themotivation behind this es-
timator is a property of two-stage least squares: when instruments are

chosen optimally, the coefficient on ðdWYÞ will be zero when both the
actual variable, WY, and the instrumental variable are included in a
regression.2

Parametric spatial econometric models such as the spatial AR model
require the researcher to specify a spatial weightmatrix that is designed
to account for local departures from a broad spatial trend.
Misspecification of Xβ can produce statistically significant estimates of
θ even if WY would add no explanatory power in a correctly specified
model. For example, suppose that house prices are high in certain neigh-
borhoods whose boundaries are not known to the researcher. Omitted
or misspecified neighborhood fixed effects will tend to produce a clus-
tering of relatively high house prices, and a weighted average of nearby
house prices – ofWY –will tend to add significant explanatory power to
the house price regression. The spatial AR approach attempts to use a
global parametric model to account for local spatial variation that may
actually be caused by model misspecification due to spatially correlated
missing variables and an incorrect functional form.

3. Conditionally parametric quantile regression

Conditionally parametric models can be a useful alternative to fully
parametric models when the true model structure is not known with
certainty. The conditionally parametric model is considered in detail
by Cleveland et al. (1992) and Cleveland (1994). The idea is to use
some structure to reduce the complexity of a fully parametric model.
In the case where a parametric structure is appropriate for one set of
variables, x, conditional on another set of variables, z, a completely non-
parametric model of the form yi = f(xi, zi) + ui can be replaced by the

1 Ahlfeldt and Wendland (2011) also analyze a large data set with fine geographic de-
tail. Their data set has approximately 11,000 observations for Berlin during the early nine-
teenth century.

2 Multiple instruments can be included directly rather than using the predicted values
ofWY from a first stage OLS regression. Details are provided in Chernozhukov and Hanson
(2006).

Table 1
Descriptive statistics.

Mean Std. Dev. Minimum Maximum

Full data set (33,477 observations)
Land value 75.0243 398.6961 0.5739 14,833.33
Log of land value 3.1078 1.3220 −0.5553 9.6046
Distance from CBD 7.1666 3.2832 0.0095 15.0848
Distance from Lake Michigan 3.7073 2.2060 0.0085 8.8107
Distance from EL Line 1.1270 1.0822 0 5.4312
Distance from major street 0.0767 0.0666 0 0.5764

Census block group averages (2206 observations)
Land value 78.9121 385.1712 0.8609 7518.519
Log of average land value 3.2735 1.2424 −0.1498 8.9251
Distance from CBD 6.7983 3.0847 0.1209 15.5757
Distance from Lake Michigan 3.6714 2.1844 0.0695 8.8208
Distance from EL Line 1.0276 0.9919 0.0012 5.4615
Distance from Major street 0.0986 0.0532 0.0002 0.4409
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