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The quasi-maximum likelihood (QML) method is popular in the estimation and inference for spatial regression
models. However, the QML estimators (QMLEs) of the spatial parameters can be quite biased and hence the stan-
dard inferences for the regression coefficients (based on t-ratios) can be seriously affected. This issue, however,
has not been addressed. The QMLEs of the spatial parameters can be bias-corrected based on the generalmethod
of Yang (2015b, J. of Econometrics 186, 178–200). In this paper, we demonstrate that by simply replacing the
QMLEs of the spatial parameters by their bias-corrected versions, the usual t-ratios for the regression coefficients
can be greatly improved. We propose further corrections on the standard errors of the QMLEs of the regression
coefficients, and the resulted t-ratios perform superbly, leading to much more reliable inferences.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The maximum likelihood (ML) or quasi-ML (QML) method is
popular in the estimation and inference for spatial regression models
(Anselin, 1988; Anselin and Bera, 1998; Lee, 2004). However, the ML
estimators (MLEs) or quasi-MLEs (QMLEs) of the spatial parameters
can be quite biased (Bao and Ullah, 2007; Yang, 2015b; Liu and Yang,
2015) and hence the standard inferences for spatial effects and covariate
effects, based on LM-statistics or t-statistics referring to the asymptotic
standard normal distribution, can be seriously affected. Much effort
has been devoted recently to the development of improved inference
methods for the spatial econometrics models. However, most of the
research has been focused on improving inferences for spatial effects

in the form of point estimation (Bao and Ullah, 2007; Bao, 2013; Liu
and Yang, 2015; Yang, 2015b) and testing (Baltagi and Yang, 2013a,
2013b; Robinson and Rossi, 2014a, 2014b; Yang, 2010, 2015a, 2015b).
Little or no attention has been paid to the development of improved
inferences for the covariate effects in the spatial regression models.

Yang (2015a) proposed a general method for constructing 2nd-order
accurate bootstrap LM tests for spatial effects, but the issue of improved
inferences for covariate effects was not studied. Yang (2015b) proposed
a general method for 3rd-order bias and variance corrections on nonline-
ar estimators which are prone to finite sample bias, and argued that once
the biases of nonlinear estimators are corrected, the biases of covariate ef-
fects and error standard deviations become negligible. He demonstrated
the effectiveness of the methods using the linear regression model with
spatial lag dependencewith results showing that a 2nd-order bias correc-
tion is largely sufficient. He further demonstrated that the 2nd-order or
3rd-order corrected t-statistics for spatial effect indeed improve upon
the standard t-statistics greatly, but again, no study was carried out in
order to test the performance of the t-statistics for covariate effects, and
its improvements.

Evidently, in practical applications of spatial econometricsmodels, it
is central to have a set of reliable inference methods for the covariate
effects. In this paper, we adopt the bias-correction method of Yang
(2015b) to propose methods that ‘correct’ the standard t-statistics for
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the regression coefficients. We demonstrate that by simply replacing
the QMLEs of the spatial parameters by their bias-corrected versions,
the usual t-ratios for the regression coefficients can be greatly improved.
We propose further corrections on the standard errors of the ‘bias-
corrected’QMLEs of the regression coefficients, and the resulted t-ratios
perform superbly, leading to much more reliable inferences. The pro-
posed methods are simple and can be easily adopted by practitioners.
We consider in detail three popular spatial regressionmodels: the linear
regression model with spatial error dependence (SED), that with a
spatial lag dependence (SLD), and that with both SLD and SED, also
referred to as the SARAR model in the literature. See Anselin and Bera
(1998) and Anselin (2001) for excellent reviews on these models.
Bias-correction on a single spatial estimator has been considered in
detail in Yang (2015b) for the SLD model, and in Liu and Yang
(2015b) for the SED model. Bias-corrections for the SARAR model
have not been formally considered, although briefly discussed in Yang
(2015b) under a general outline for bias corrections for a model with
a vector of non-linear parameters.

The line-up for the paper is as follows. Section 2 outlines the general
method of bias correction on nonlinear estimators, and themethods for
constructing improved t-statistics for the linear parameters in the
model. Sections 3–5 study in detail the improved inference methods
for the regression coefficients for, respectively, the SED model, the SLD
model, and the SARAR model. Each of Sections 3–5 is accompanied
with a set of Monte Carlo simulation results. Section 6 concludes the
paper, and discuss further extensions of the proposed methodology.

2. Method of bias correction for nonlinear estimation

From the discussions in the introduction, it is clear that the key for
an improved inference for the regression coefficients is to bias-correct
the QMLEs of the spatial parameters in a spatial regression model. We
now outline the method of bias correction on nonlinear estimators,
not necessarily the QMLEs of the spatial parameters. In studying

the finite sample properties of a parameter estimator, say θ̂n , defined
as θ̂n ¼ argfψnðθÞ ¼ 0g for a joint estimating function (JEF) ψn(θ),
based on a sample of size n, Rilstone et al. (1996) developed a stochastic

expansion from which a bias-correction on θ̂n can be made. The vector
of parameters θ may contain a set of linear and scale parameters, say α,
and a few non-linear parameters, say δ, in the sense that given δ,
the constrained estimator ~αnðδÞ of the vector α possesses an explicit
expression but the estimation of δ has to be done through numerical
optimization. In this case, Yang (2015b) argued that it is more effective
to work with the concentrated estimating function (CEF): ~ψnðδÞ ¼ ψn

ð~αnðδÞ; δÞ, and to perform a stochastic expansion based on this CEF
and hence bias corrections on the non-linear estimators defined by,

δ̂n ¼ arg ~ψn δð Þ ¼ 0
n o

; ð1Þ

which not only reduces the dimensionality of the bias-correction
problem (a multi-dimensional problem is reduced to a single-
dimensional problem if δ is a scalar parameter), but also takes
into account the additional variability from the estimation of the
‘nuisance’ parameters α.

Let HrnðδÞ ¼ ∇r ~ψnðδÞ; r ¼ 1;2;3, be the partial derivatives of ~ψnðδÞ,
carried out sequentially and elementwise with respect to δ′, ~ψn ≡ ~ψnðδ0Þ,
Hrn ≡ Hrn (δ0), Hrn

∘ = Hrn − E(Hrn), r = 1, 2, 3, and Ωn = −[E(H1n)]−1.

Yang (2015b) presents a set of sufficient conditions under which δ̂n
possesses the following third-order stochastic expansion at δ0, the true
value of δ:

δ̂n−δ0 ¼ a−1=2 þ a−1 þ a−3=2 þ Op n−2� �
; ð2Þ

where, a−s/2 represents terms of order Op (n−s/2) for s = 1,2,3, having
the expressions,

a−1=2 ¼ Ωn
~ψn;

a−1 ¼ ΩnH
∘
1na−1=2 þ 1

2
ΩnE H2nð Þ a−1=2 ⊗ a−1=2

� �
;

a−3=2 ¼ ΩnH
∘
1na−1 þ 1

2
ΩnH

∘
2n a−1=2 ⊗ a−1=2
� �

þ 1
2
ΩnE H2nð Þ a−1=2 ⊗ a−1 þ a−1 ⊗ a−1=2

� �
þ 1

6
ΩnE H3nð Þ a−1=2 ⊗ a−1=2 ⊗ a−1=2

� �
;

with ⨂ denoting the Kronecker product.
When δ is a scalar, a−s/2 simplifies to: a−1=2 ¼ Ωn

~ψn , a−1 ¼
ΩnH

∘
1na−1=2 þ 1

2 ΩnEðH2nÞða2−1=2Þ , and a−3=2 ¼ ΩnH
∘
1na−1 þ 1

2 ΩnH
∘
2n

ða2−1=2Þ þΩnEðH2nÞða−1=2a−1Þ þ 1
6 ΩnEðH3nÞða3−1=2Þ.

The key difference between the CEF-based and JEF-based expansions
is that E½~ψnðδ0Þ� ≠ 0 in general, but E[ψn(θ0)] = 0, which allows a CEF-
based bias correction to be derived under a more relaxed condition.

Thus, a third-order expansion for the bias of δ̂n takes the form:

Bias δ̂n
� �

¼ b−1 þ b−3=2 þ O n−2� �
; ð3Þ

where b−1 = E(a−1/2 + a−1) and b−3/2 = E(a−3/2), being respectively

the second- and third-order biases of δ̂n . If an estimator b̂−1 of b−1 is

available such that Biasðb̂−1Þ ¼ Oðn−3=2Þ , then a second-order bias-
corrected estimator of δ is,

δbc2n ¼ δ̂n−b̂−1: ð4Þ

If estimators b̂−1 and b̂−3=2 of both b−1 and b−3/2 are available such

that Biasðb̂−1Þ ¼ Oðn−2Þ and Biasðb̂−3=2Þ ¼ Oðn−2Þ , we have a third-
order bias-corrected estimator of δ as,

δbc3n ¼ δ̂n−b̂−1−b̂−3=2: ð5Þ

An obvious approach for finding the feasible corrections b̂−1 and

b̂−3=2 is to first find the analytical expressions for b−1 and b−3/2 and

then plugging in θ̂n for θ0. This approach is generally not feasible for
two reasons: first, it is often difficult to find these analytical expressions
even for known error distributions, and second, even if these
expressions are available, it may involve higher-order moments of the
errors if they are nonnormal, for which estimation may be unstable
numerically. To overcome this difficulty, Yang (2015b) proposed a
simple and yet very effective bootstrapmethod to estimate the relevant
expected values.

Suppose that the model under consideration takes the form

g Zn; θ0ð Þ ¼ en;

and that the key quantities ~ψn andHrn can be expressed as ~ψn ≡ ~ψnðen; θ0Þ
and Hrn≡Hrn(en, θ0), r = 1, 2, 3. Let ên ¼ gðZn; θ̂nÞ be the vector of
estimated residuals based on the original data, and F̂ n be the empirical
distribution function (EDF) of ên (centered).When δ is a scalar parameter,
the bootstrap estimates of the quantities in the bias terms are:

Ê ~ψ
i
nH

j
rn

� �
¼ E� ~ψ

i
n ê�n; θ̂n
� �

Hj
rn ê�n; θ̂n
� �h i

; i; j ¼ 0;1;2;…; r ¼ 1;2;3;

ð6Þ

where E⁎ denotes the expectation with respect to F̂ n , and ên⁎ is a vector
of n random draws from F̂ n . To make Eq. (6) practically feasible, the
following procedure can be followed.
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