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In this paper, we extend the GMM estimator in Lee (2007) to estimate SAR models with endogenous regressors.
We propose a new set of quadratic moment conditions exploiting the correlation of the spatially lagged depen-
dent variable with the disturbance term of themain regression equation andwith the endogenous regressor. The
proposed GMM estimator ismore efficient than IV-based linear estimators in the literature, and computationally
simpler than theML estimator.With carefully constructed quadraticmoment equations, the GMMestimator can
be asymptotically as efficient as theML estimator under normality. Monte Carlo experiments show that the pro-
posed GMM estimator performs well in finite samples.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, spatial econometricmodels play a vital role in empir-
ical research on regional and urban economics. By expanding the notion
of space from geographic space to “economic” space and “social” space,
these models can be used to study cross-sectional interactions in much
wider applications including education (e.g. Lin, 2010; Sacerdote, 2011;
Carrell et al., 2013), crime (e.g. Patacchini and Zenou, 2012; Lindquist
and Zenou, 2014), industrial organization (e.g. König et al., 2014),
finance (e.g. Denbee et al., 2014), etc.

Among spatial econometric models, the spatial autoregressive (SAR)
model introduced by Cliff andOrd (1973, 1981) has received themost at-
tention. In this model, the cross-sectional dependence is modeled as the
weighted average outcome of neighboring units, typically referred to as
the spatially lagged dependent variable. As the spatially lagged depen-
dent variable is endogenous, likelihood- and moment-based methods
have been proposed to estimate the SAR model (e.g. Kelejian and
Prucha, 1998; Lee, 2004, 2007; Lee and Liu, 2010). In particular, for the
SARmodelwith exogenous regressors, Lee (2007) proposes a generalized
method of moments (GMM) estimator that combines linear moment

conditions, with the (estimated) mean of the spatially lagged dependent
variable as the instrumental variable (IV), and quadratic moment condi-
tions based on the covariance structure of the spatially lagged dependent
variable and the model disturbance term. The GMM estimator improves
estimation efficiency of IV-based linear estimators in Kelejian and
Prucha (1998) and is computationally simple relative to the maximum
likelihood (ML) estimator in Lee (2004). Furthermore, Lin and Lee
(2010) show that a sub-class of the GMM estimators is consistent in
the presence of an unknown form of heteroskedasticity in model distur-
bances, and thus more robust relative to the ML estimator.

For SAR models with endogenous regressors, Liu (2012) and Liu and
Lee (2013) consider, respectively, the limited informationmaximum like-
lihood (LIML) and two stage least squares (2SLS) estimators, in the pres-
ence of many potential IVs. Liu and Lee (2013) also propose a criterion
based on the approximate mean square error of the 2SLS estimator to se-
lect the optimal set of IVs. The SARmodelwith endogenous regressors can
be considered as an equation in a system of simultaneous equations. For
the full information estimation of the system, Kelejian and Prucha
(2004) propose a three stage least squares (3SLS) estimator and, in a re-
cent paper, Yang and Lee (2014) consider the quasi-maximum likelihood
(QML) approach. TheQMLestimator is asymptoticallymore efficient than
the 3SLS estimator under normality but can be computationally difficult
to implement. The existing estimators for the SAR model with endoge-
nous regressors are summarized in Table 1.

In this paper, we extend the GMM estimator in Lee (2007) to
estimate SAR models with endogenous regressors. We propose a new
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set of quadratic moment equations exploiting (i) the covariance struc-
ture of the spatially lagged dependent variable and the disturbance
term of the main regression equation and (ii) the covariance structure
of the spatially lagged dependent variable and the endogenous regres-
sor.We establish the identification, consistency and asymptotic normal-
ity of the proposed GMM estimator. The GMM estimator is more
efficient than the 2SLS and 3SLS estimators, and computationally sim-
pler than the ML estimator. With carefully constructed quadratic mo-
ment equations, the GMM estimator can be asymptotically as efficient
as the ML estimator under normality. We also conduct a limited
Monte Carlo experiment to show that the proposed GMM estimator
performs well in finite samples.

The rest of the paper is organized as follows. In Section 2, we introduce
the SAR model with endogenous regressors. In Section 3, we define the
GMM estimator and discuss the identification of model parameters. In
Section 4, we study the asymptotic properties of the GMM estimator and
discuss the optimal moment conditions to use. Section 5 reports Monte
Carlo experiment results. Section6briefly concludes. Theproofs are collect-
ed in the appendix.

Throughout the paper, we adopt the following notation. For an n× n
matrix A= [aij]i, j = 1,⋯,n, let A(s) = A+ A′, vecD(A) = (a11,⋯, ann)′, and
diag(A) = diag(a11, ⋯, ann). The row (or column) sums of A are
uniformly bounded in absolute value if maxi = 1,⋯,n∑j = 1

n |aij|
(or maxj = 1,⋯,n∑i = 1

n |aij|) is bounded.

2. Model

Consider a SAR model with an endogenous regressor1 given by

y1 ¼ λ0Wy1 þ ϕ0y2 þ X1β0 þ u1; ð1Þ

where y1 is ann×1 vector of observations on thedependent variable,W
is an n× n nonstochastic spatial weights matrix with a zero diagonal, y2
is an n × 1 vector of observations on an endogenous regressor, X1 is an
n× K1matrix of observations on K1 nonstochastic exogenous regressors,
and u1 is an n × 1 vector of i.i.d. innovations.2 Wy1 is usually referred to
as the spatially lagged dependent variable. Let X= [X1, X2], where X2 is
an n × K2 matrix of observations on K2 excluded nonstochastic exoge-
nous variables. The reduced form of the endogenous regressor y2 is as-
sumed to be

y2 ¼ Xγ0 þ u2; ð2Þ

where u2 is an n × 1 vector of i.i.d. innovations. Let θ0 = (δ0′, γ0′)′, with
δ0= (λ0,ϕ0,β0′)′, denote the vector of true parameter values in the data
generating process (DGP). The following regularity conditions are com-
mon in the literature of SAR models (see, e.g., Lee, 2007; Kelejian and
Prucha, 2010).

Assumption 1. Let u1,i and u2,i denote, respectively, the i-th elements of u1

and u2.

(i) (u1,i, u2,i)′ ~ i. i. d. (0, Σ), where

Σ ¼ σ2
1 σ12

σ12 σ2
2

� �
:

(ii) E|uk,iul,iur,ius,i|1+ η is bounded for k, l, r, s = 1, 2 and some small
constant η N 0.

Assumption 2. (i) The elements of X are uniformly bounded constants.
(ii) X has full column rank KX = K1 + K2. (iii) limn → ∞n

−1X′X exists
and is nonsingular.

Assumption 3. (i) All diagonal elements of the spatial weights matrix W
are zero. (ii) λ0∈ð− λ

¯
; �λÞ with 0b λ

¯
; �λ≤cλb∞ . (iii) S(λ) = In − λW is

nonsingular for all λ∈ð− λ
¯
; �λÞ. (iv) The row and column sums of W and

S(λ0)−1 are uniformly bounded in absolute value.

Assumption 4. θ0 is in the interior of a compact parameter space Θ.

3. GMM estimation

3.1. Estimator

Let S = S(λ0) = In − λ0W and G = WS−1. Under Assumption 3,
model (1) has a reduced form

y1 ¼ S−1X1β0 þ ϕ0S
−1Xγ0 þ S−1u1 þ ϕ0S

−1u2; ð3Þ

which implies that

Wy1 ¼ GX1β0 þ ϕ0GXγ0 þ Gu1 þ ϕ0Gu2: ð4Þ

As Wy1 and y2 are endogenous, consistent estimation of Eq. (1) re-
quires IVs for Wy1 and y2. From Eq. (4), the deterministic part of Wy1
is a linear combination of the columns in GX = [GX1,GX2]. Therefore,
GX can be used as an IV matrix for Wy1.3 From Eq. (2), X can be used
as an IV matrix for y2. In general, let Q be an n × KQ matrix of IVs such
that E(Q′u1) = E(Q′u2) = 0. Let u1(δ) = S(λ)y1 − ϕy2 − X1β and
u2(γ) = y2 − Xγ, where δ = (λ, ϕ, β′)′. The linear moment function
for the GMM estimation is given by

g1 θð Þ ¼ I2⊗Qð Þ0u θð Þ;

where ⊗ denotes the Kronecker product, u(θ) = [u1(δ)′, u2(γ)′]′, and
θ = (δ′, γ′)′.4

Besides the linear moment functions, Lee (2007) proposes to use
quadratic moment functions based on the covariance structure of the
spatially lagged dependent variable andmodel disturbances to improve
estimation efficiency. We generalize this idea to SAR models with
endogenous regressors. Substitution of Eq. (2) into Eq. (1) leads to a
“pseudo” reduced form

y1 ¼ λ0Wy1 þ ϕ0Xγ0 þ X1β0 þ u1 þ ϕ0u2: ð5Þ

By exploiting the covariance structure of the spatially lagged
dependent variable Wy1 and the disturbances of Eq. (5), we propose
the following quadratic moment functions

g2 θð Þ ¼ g2;11 δð Þ0; g2;12 θð Þ0;g2;21 θð Þ0; g2;22 γð Þ0� �0

1 In this paper,we focus on themodelwith a single endogenous regressor for exposition
purpose. The model and proposed estimator can be easily generalized to accommodate
any fixed number of endogenous regressors.

2 y1, y2, u1, u2, X,W are allowed to depend on the sample size n, i.e., to formulate trian-
gular arrays as in Kelejian and Prucha (2010). Nevertheless, we suppress the subscript n to
simplify the notation.

3 The IV matrix GX is not feasible as G involves the unknown parameter λ0. Under
Assumption 3, GX=WX+ λ0W2X+ λ0

2W3X+⋯. Therefore, we can use the leading or-
der termsWX, W2X, W3X of the series expansion as feasible IVs for Wy.

4 In practice, we could use two different IV matrices Q1 and Q 2 to construct linear mo-
ment functionsQ1′u1(δ) andQ 2′u2(γ). TheGMMestimatorwith g1(θ) is (asymptotically)
no less efficient than that with Q1′u1(δ) and Q 2′u2(γ) if Q includes all linearly indepen-
dent columns of Q1 and Q 2.

Table 1
Existing estimators for SAR models with endogenous regressors.

Single-equation
estimator

System estimator

IV-based linear estimator Liu and Lee (2013) Kelejian and Prucha (2004)
likelihood-based estimator Liu (2012) Yang and Lee (2014)
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