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We examine spatially correlated interregional flows measured as binary choice outcomes. Since the dependent
variable is not only binary and dyadic, but also spatially correlated, we propose a spatial origin–destination probit
model and a Bayesian estimation methodology that avoids inconsistent maximum likelihood estimates. We
apply the model to militarized interstate dispute initiations, observations of which are clearly binary and dyadic
and whichmay be spatially correlated due to their geographic distribution. Using a cross-section of 26 European
countries drawn from the period leading up to WWII, we find empirical evidence for target-based spatial corre-
lation and sizable network effects resulting from the correlation. In particular, we find that the effect of national
military capability of the potential aggressor, which is a significant determinant of conflict in either case, is
overstated in a benchmark model that ignores spatial correlation. This effect is further differentiated by the geo-
graphic location of a country.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spatial autocorrelation introduces computational challenges to
mathematical modeling and has been widely studied by statisticians,
economists, political scientists, geographers, and others. As is well-
known, ignoring substantial spatial correlationmay generate inefficient
or even inconsistent parameter estimates. Spatial autocorrelation may
be more prominent in data collected in a dyadic setting, in which a sin-
gle observation consists of a pair of individuals, such as international
conflict, international trade, or migration flows. Nonetheless, dyadic
data and specifically directed dyadic data, where each observation con-
tains a distinct origin and destination, present additional challenges, be-
cause correlation between two observations involves spatial correlation

between up to four individuals. In addition, many dyadic series, such as
conflict initiations, are also binary. That is, an observation records
whether or not the event, transaction, or flow occurred, adding a third
challenge to effective modeling.

Spatially correlated binary observations have been studied by
McMillen (1992), Dubin (1995), and LeSage (2000), among others,
while spatially correlated directed dyadic observations have been stud-
ied more recently by Fischer et al. (2006), LeSage et al. (2007), and
LeSage and Pace (2008, 2009). The latter authors develop a spatial ori-
gin–destination (spatial OD) approach to modeling directional flows
that involves three different types of spatial correlation. Their modeling
strategy allows for correlations in (a) neighboring origins with a com-
mon destination, (b) neighboring destinations with a common origin,
and (c) neighboring origins and neighboring destinations.

The methodological contribution of this paper addresses modeling
dependent variables with statistical characteristics in the intersection
of these three nonstandard yet realistic assumptions: binary, dyadic,
and spatially correlated data. We take an approach that extends the
class of origin–destination (OD) models of LeSage and Pace (2008,
2009) by allowing for a binary and directed dyadic dependent variable.
We show that a spatial OD probit model, highlighting all three features,
may be estimated using a Bayesian method related to that discussed
by LeSage and Pace (2009). Further, we derive the marginal effects
from changing a country-specific regressor in the model. This task is
complicated not only in the usual way by the nonlinearity of the probit
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link function and the spatial correlation, but also by the OD structure of
the data, as pointed out by Thomas-Agnan and LeSage (2013).

We apply our methodology to a cross-section of binary dyadic
observations on militarized interstate disputes (MIDs). Due to
its devastating destructiveness to human lives and socio-economic
development, interstate war has been a very active research topic
for political scientists and economists. The former group tends to
focus more on the causal factors of war, while the latter may be
more interested in examining the relationships between war and
economic fundamentals (e.g., Blomberg and Hess, 2002; Hess and
Orphanides, 2001; Koubi, 2005).

We examine initiation of MIDs in a cross-section of 26 European
countries during the period leading up to WWII. By modeling multiple
sources of spatial correlation across directed dyads, the spatial ODprobit
model reveals how conflict initiations may be correlated. We find em-
pirical evidence to support target-based (destination-based) spatial cor-
relation, and we find the most statistically meaningful determinants of
conflict to be geographical distance and national capabilities of the po-
tential initiator. There are substantial network effects in the latter, the
omission of which overstates its marginal importance. In particular, a
military buildup in one country may decrease the probability of conflict
between two others. An unexpected finding suggests that military
buildups in countries at the edge of the map (the U.K., e.g.) have very
different implications from buildups in countries in the center
(Germany, e.g.). Specifically, such buildups have less of an impact on
conflict with the immediate neighbors of the former countries than on
conflict with neighbors of the latter.

Sample selection focuses on a particular historical period and geo-
graphical location with a relatively large number of conflict initiations
as a percentage of the sample. However, our findings are suggestive
for any spatially correlated cross-section of conflict-prone units. We
note, however, that more general conflict models might allow only
local spillovers, in the sense of LeSage and Pace (2013). Our model
does not preclude the possibility that the military buildup of one coun-
try (Germany, e.g.) could increase the probability of conflict in thewhole
region, with the largest increases for conflicts with immediate
neighbors.

The rest of this study is organized as follows. In Section 2, we moti-
vate spatial OD modeling and outline the technical difficulties in apply-
ing the spatial OD model to binary, dyadic dependent variables. A
Bayesian approach to the spatial OD probit model is presented in
Section 3, and in Section 4, we discuss additional issues of empirical in-
terest in estimating a spatial OD probit model: self-directed dyads and
marginal effects. In Section 5, we apply the model to conflict initiation
among European countries leading up to WWII. We conclude with
Section 6.

We rely on the following notation throughout the paper. The vec op-
erator converts a matrix into a column vector by stacking its columns
into a single vector. ⨂ denotes the Kronecker product, and ιn and ιN de-
note n by 1 andN by 1 unit vectors, where n records the number of sam-
pled countries and N = n2. |A| refers to the determinant of a square
matrix A.

2. Modeling spatially correlated origin–destination flows

To motivate the spatial OD probit model, we borrow heavily from
the structural and notational framework of LeSage and Pace (2008,
2009). Since OD flows are directional, one pair of regions will yield
two observations distinguished by reversing the origin and destination.
Therefore, if n regions are considered under a spatial OD model, the
number of observations becomes n2 = N. We use an n by n square ma-
trix Y∗ to denote interregional flows from each of the n origin regions to
each of the n destination regions, with each column recording a specific
origin's outflows to each of the n potential destination regions and each
row corresponding to the inflows toward a given destination from each

of the n potential origins. (We use the superscript *, because we will
consider these to be latent flows subsequently.)

Specifically, the OD flow matrix is organized as follows:
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o1→d2
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To reflect an origin-centric ordering of OD flows (LeSage and Pace,
2008, p. 944), the matrix Y* is then vectorized into an N by 1 matrix
y*, such that y∗ = vec(Y∗).

In a typical spatial interaction model, where each observation is a
single region, explanatory variables that represent K region-specific
characteristics for each of the n regions are represented by ann byKma-
trix Z. In keeping with the origin-centric arrangement of y∗, Z is stacked
n times in a spatial OD model to form an N by K matrix Xd = ιn ⊗ Z,
which tallies destination characteristics. Similarly, Xo = Z ⊗ ιn pro-
duces anN byKmatrix that contains origin characteristics. Representing
by G an n by n OD distance matrix similar to the flow matrix above,
g = vec(G) is an N by 1 vector recording the distances from origins to
destinations with an origin-centric ordering.

LeSage and Pace (2008) extend the spatial autoregressive model by
introducing spatial lags defined by three N by N row-standardized spa-
tial weight matrices,Wd, Wo, andWw.Wd = In ⊗ W embodies the no-
tion that factors causing flows from an origin to a destinationmay bring
about similar flows to nearby destinations. Accordingly, the spatial lag
Wdy

∗ attempts to pick up this type of destination-based dependence
by the use of average flows from one origin to the neighbors of a
given destination. Similarly,Wo = W ⊗ In reflects origin-based depen-
dence and the spatial lag Woy

∗ measures an average of flows into one
destination from the neighbors of a given origin.

Third, LeSage and Pace (2008) apply the “successive spatial filter”
(IN − ρdWd)(IN − ρoWo) to control for both origin-based and
destination-based dependence (origin-to-destination dependence).
The cross-product introduces a third type of spatial correlationmodeled
by the spatial weight matrix Ww = W ⊗ W. Since Ww represents a
second-order connectivity between the neighborhood of an origin and
the neighborhood of a destination, the spatial lag Wwy

∗ indicates an av-
erage of flows from the neighborhood of an origin to the neighborhood
of a destination. Strictly speaking, ρw = − ρdρo, but LeSage and Pace
(2008) find compelling evidence to lift the restriction in their
application.

Consider a model given by

y� ¼ ρdWdy
� þ ρoWoy

� þ ρwWwy
� þ αιN þ Xdβd þ Xoβo þ γg þ ε ð1Þ

where α is an intercept, βd and βo are K by 1 coefficient vectors, γ is a
scalar coefficient, and ε ~ N(0, σ2IN). This model features dyadic and
spatially correlated y∗, and is exactly the spatial OD regression model
proposed by LeSage and Pace (2008) for an observable continuous de-
pendent variable y∗.

The spatial OD model in Eq. (1) implies the reduced-form equation

y� ¼ A−1Xβ þ A−1ε ð2Þ

where X = (ιN,Xd,Xo,g), β = (α,βd
' ,βo

' ,γ)' and A = (IN − ρdWd −
ρoWo − ρwWw).1

1 A sufficient condition for existence of the inverse is that |ρd + ρo + ρw| b 1.
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