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In the presence of heteroskedasticity, Lin and Lee (2010) show that the quasi-maximum likelihood (QML)
estimator of the spatial autoregressive (SAR)model can be inconsistent as a ‘necessary’ condition for consistency
can be violated, and thus propose robust GMM estimators for the model. In this paper, we first show that this
condition may hold in certain situations and when it does the regular QML estimator can still be consistent. In
cases where this condition is violated, we propose a simple modified QML estimation method robust against
unknown heteroskedasticity. In both cases, asymptotic distributions of the estimators are derived, and methods
for estimating robust variances are given, leading to robust inferences for the model. Extensive Monte Carlo
results show that the modified QML estimator outperforms the GMM and QML estimators even when the latter
is consistent. The proposed methods are then extended to the more general SARAR models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Spatial dependence is increasingly becoming an integral part of
empirical works in economics as a means of modelling the effects of
‘neighbours’ (see, e.g., Cliff and Ord (1972, 1973, 1981), Ord (1975),
Anselin (1988, 2003), Anselin and Bera (1998), LeSage and Pace
(2009) for some early and comprehensive works). Spatial interaction
in general can occur in many forms. For instance peer interaction can
cause stratified behaviour in the sample such as herd behaviour in
stockmarkets, innovation spillover effects, localized purchase decisions,
etc., while spatial relationships can also occur more naturally due to
structural differences in space/cross-section such as geographic
proximity, trade agreements, demographic characteristics, etc. See
Case (1991), Pinkse and Slade (1998), Pinkse et al. (2002), Hanushek

et al. (2003), Baltagi et al. (2007) to name a few. Among the various spa-
tial econometrics models that have been extensively treated, the most
popular one may be the spatial autoregressive (SAR) model.

While heteroskedasticity is common in regular cross-section studies,
it may be more so for a spatial econometrics model due to aggregation,
clustering, etc. Anselin (1988) identifies that heteroskedasticity can
broadly occur due to “idiosyncrasies in model specification and affect
the statistical validity of the estimated model”. This may be due to the
misspecification of the model that feeds to the disturbance term or
may occur more naturally in the presence of peer interactions. Data re-
lated heteroskedasticity may also occur for example if the model deals
with a mix of aggregate and nonaggregate data, the aggregation may
cause errors to be heteroskedastic. See, e.g., Glaeser et al. (1996),
LeSage and Pace (2009), Lin and Lee (2010), Kelejian and Prucha
(2010), formore discussions. As such, the assumption of homoskedastic
disturbances is likely to be invalid in a spatial context in general. How-
ever, much of the present spatial econometrics literature has focused
on estimators developed under the assumption that the errors are
homoskedastic. This is in a clear contrast to the standard cross-section
econometrics literature where the use of heteroskedasticity robust esti-
mators is a standard practice.

Although Anselin raised the issue of heteroskedasticity in spatial
models as early as in 1988, and made an attempt to provide tests of
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spatial effects robust to unknown heteroskedasticity, comprehensive
treatments of estimation related issueswere not considered until recent
years by, e.g., Kelejian and Prucha (2007, 2010), LeSage (1997), Lin and
Lee (2010), Arraiz et al. (2010), Badinger and Egger (2011), Jin and Lee
(2012), Baltagi and Yang (2013b), and Do an and Taşpinar (2014). Lin
and Lee (2010) formally illustrate that the traditional quasi-maxi-
mum likelihood (QML) and generalized method of moments
(GMM) estimators are inconsistent in general when the SAR model
suffers from heteroskedasticity, and provide heteroskedasticity ro-
bust GMM estimators by modifying the usual quadratic moment
conditions.

Inspired by Lin and Lee (2010), we introduce a modified QML
estimator (QMLE) for the SAR model by modifying the concentrated
score function for the spatial parameter to make it robust against
unknown heteroskedasticity. It turns out that themethod is very simple
and more importantly, it can be easily generalized to suit more general
models.1 For heteroskedasticity robust inferences, we propose an outer-
product-of-gradient (OPG) method for estimating the variance of the
modified QMLE. We provide formal theories for the consistency and
asymptotic normality of the proposed estimator, and the consistency
of the robust standard error estimate. Extensive Monte Carlo results
show that the modified QML estimator generally outperforms its
GMM counter parts in terms of efficiency and sensitivity to the magni-
tude of model parameters in particular the regression coefficients. The
Monte Carlo results also show that the proposed robust standard error
estimate performswell.We also study the cases underwhich the regular
QMLE is robust against unknown heteroskedasticity and provide a set of
robust inference methods. It is interesting to note that the modified
QMLE is computationally as simple as the regular QMLE, and it also out-
performs the regular QMLE when the latter is heteroskedasticity robust.
This is because themodifiedQMLE captures the extra variability inherent
from the estimation of the regression coefficients and the average of
error variances.

To demonstrate their flexibility and generality, the proposed
methods are then extended to the popular spatial autoregressive
model with spatial autoregressive disturbances (SARAR(1, 1)) with
heteroskedastic innovations. Kelejian and Prucha (2010) formally
treat this model with a three-step estimation procedure. Monte Carlo
results show that the modified QMLE performs better in finite sample
than the three-step estimator. Further possible extensions of the
proposed methods are discussed. In summary, the proposed set of
QML-based robust inference methods are simple and reliable, and can
be easily adopted by applied researchers.

The rest of the paper is organized as follows. Section 2 examines the
cases where the regular QML estimator of the SAR model is consistent
under unknown heteroskedasticity, and provides methods for robust
inferences. Section 3 introduces the modified QML estimator that is
generally robust against unknown heteroskedasticity, and presents
methods for robust inferences. Section 4 presents the Monte Carlo
results for the SAR model. Section 5 extends the proposed methods to
the popular SARAR(1, 1) model and discusses further possible exten-
sions. Section 6 concludes the paper. All technical details are given in
Appendix B.

2. QML estimation of spatial autoregressive models

In this section, we first outline the QML estimation of the SARmodel
under the assumptions that the errors are independent and identically

distributed (iid). Then, we examine the properties of the QMLE of the
SARmodel when the errors are independent but not identically distrib-
uted (inid).We provide conditions under which the regular QMLE is ro-
bust against heteroskedasticity of unknown form, derive its asymptotic
distribution, and provide heteroskedasticity robust estimator of its as-
ymptotic variance.

Some general notation will be followed in this paper: | · | and tr(·)
denote, respectively, the determinant and trace of a square matrix; A′
denotes the transpose of a matrix A; diag(·) denotes the diagonal ma-
trix formed by a vector or the diagonal elements of a square matrix;
diagv(·) denotes the column vector formed by the diagonal elements
of a square matrix; and a vector raised to a certain power is operated
elementwise.

2.1. The model and the QML estimation

Consider the spatial autoregressive or SAR model of the form:

Yn ¼ λ0WnYn þ Xnβ0 þ ϵn; ð1Þ

where Xn is an n × k matrix of exogenous variables, Wn is a known
n × n spatial weights matrix, ϵn is an n × 1 vector of disturbances of
independent and identically distributed (iid) elements with mean
zero and variance σ 2, β is a k × 1 vector of regression coefficients
and λ is the spatial parameter. The Gaussian loglikelihood of θ =
(β′, σ 2, λ) is,

ℓn θð Þ ¼ −n
2

ln 2πð Þ−n
2

ln σ2
� �

þ ln jAn λð Þj− 1
2σ2 ϵ

0
n β;λð Þϵn β;λð Þ; ð2Þ

where An(λ) = In − λWn, In is an n × n identity matrix, and

ϵn(β, λ) = An(λ)Yn − Xnβ. Given λ, ℓn(θ) is maximized at β̂n(λ) =

(Xn′Xn)−1Xn′An(λ)Yn and σ̂ 2
n λð Þ ¼ 1

n Y
0
nA

0
n λð ÞMnAn λð ÞYn; where Mn =

In − Xn(Xn′Xn)−1Xn′. By substituting β̂n(λ) and σ̂n2(λ) into ℓn(θ), we
arrive at the concentrated Gaussian loglikelihood function for λ as,

ℓc
n λð Þ ¼ −n

2
ln 2πð Þ þ 1½ �−n

2
ln σ̂ 2

n λð Þ
� �

þ ln jAn λð Þj: ð3Þ

Maximizing ℓn
c(λ) gives the unconstrained QMLE λ̂n of λ, and thus the

QMLEs of β and σ 2 as β̂n ≡ β̂ðλ̂n) and σ̂n
2 ≡ σ̂n

2(λ̂n). Denote σ̂n = (β̂′
n ,

σ̂n
2, λ̂n)′, the QMLE of θ.
Under regularity conditions, Lee (2004) establishes the consis-

tency and asymptotic normality of the QMLE θ̂n . In particular, he

shows that λ̂n and β̂n may have a slower than
ffiffiffi
n

p
-rate of convergence

if the degree of spatial dependence (or the number of neighbours
each spatial unit has) grows with the sample size n. The QMLE and
its asymptotic distribution developed by Lee are robust against
nonnormality of the error distribution. However, some important
issues need to be further considered: (i) conditions under which the

regular QMLE θ̂n remains consistent when errors are heteroskedastic,

(ii) methods tomodify the regular QMLE θ̂n so that it becomes generally
consistent under unknown heteroskedasticity, and (iii) methods for es-
timating the variance of the (modified) QMLE robust against unknown
heteroskedasticity.

2.2. Robustness of QMLE against unknown heteroskedasticity

It is accepted that the regular QMLE of the usual linear regression
model without spatial dependence, developed under homoskedastic
errors, is still consistent when the errors are in fact heteroskedastic.
However, for correct inferences the standard error of the estimator
has to be adjusted to account for this unknown heteroskedasticity
(White, 1980). Suppose now we have a linear regression model with

1 The efficiency of anMLEmay be the driving force for exploiting a likelihood-based es-
timator for achieving robustness against various model misspecifications such as
heteroskedasticity and nonnormality. The computational complexity may be the key fac-
tor that hinders the application of the ML-type estimation method. However, with the
modern computing technologies this is no longer an issue of major concern, unless n is
very large.
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