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We present an analytical solution to the two-dimensional two-stage Hotelling model with quadratic
transportation costs. We assume that consumers' choice is tempered by a logit function, which characterizes
consumers' heterogeneity. As in the one-dimensional case, stores aggregate spatially when consumers'
heterogeneity is strong enough. When it decreases, we show that stores differentiate in only one dimension.
The analytical solution allows us to give a precise interpretation of this effect through the comparison of
consumers' elasticity under differentiation along one or two characteristics. Finally, we extend our results to
a hypercube of any dimension.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Hotelling's model (Hotelling, 1929) is one of the preferred “toy
models” of spatial economics. Variations of this model and its
“Principle of Minimum Differentiation” have generated a large
literature (for reviews, see (Anderson et al., 1992; Tirole, 1998; Hoover
and Giarratani, 1984; Brown, 1989), for recent papers, see (Veendorp
and Majeed, 1995; Tabuchi, 1994; Irmen and Thisse, 1998; Konishi,
2005)) allowing researchers to play with elementary mechanisms at
will. In essence, this model consists in “consumers” that are
distributed in a bounded space and choose to buy at the store which
maximizes their utility. The definition of the consumer utility includes
store prices and transportation costs. The aim of the model is to
determine optimal locations and prices for competing stores trying to
maximize their own profits.

The main conclusions of the one dimensional Hotelling model for
two stores looking for “location then prices” optima are summarized
in (Anderson et al., 1992). The locations chosen result from a tension
between a “competition effect” (or market stealing effect) and a
market power effect. On the one hand a firm wants to be near the
market center in order to steal customers from its rival. On the other
hand, a firm wants to be distant from its rival in order to soften price
competition. The relative importance of both factors – and therefore
the optimal locations – depends on consumers' heterogeneity. This
heterogeneity represents additional choice factors, not taken into

account explicitly in the analysis, which enter the picture as a random
“noise” in the utility functions. Usually, this effect is introduced
through a logit function (Anderson et al., 1992), the heterogeneity
magnitude being quantified by the parameter μ. When the hetero-
geneity is great enough, the market stealing effect is dominant:
consumers view the two stores as being sufficiently different that
price competition between them is muted evenwhen they are close to
each other. In contrast, when heterogeneity is small, themarket power
effect is dominant, overcoming the positive impact that a unilateral
move towards the market center has on demand. Therefore, stores
prefer to separate in order to soften price competition.

The original one dimensional Hotelling model has been extended
to two dimensional spaces by Veendorp and Majeed (1995) and
Tabuchi (1994). These studies have shown that, when consumers'
heterogeneity is not taken into account (μ=0), stores maximally
differentiate in one of the dimensions, while adopting an identical
location in the other dimension. Irmen and Thisse (1998) have
generalized this result to any dimensions, imposing the condition that
one characteristic is dominant in the consumer's choice.

To the best of our knowledge, there have been no general studies
including consumers' heterogeneity (μ≠0) in more than one dimen-
sion. In the present paper, we present an analytical solution to a
Hotelling model with quadratic transportation costs, for arbitrary
values of the heterogeneity parameter μ. We show that, when μ
becomes smaller than a precise threshold, stores differentiate in only
one dimension, without assuming any condition on the weight of the
different characteristics. The analytical solution allows us to give a
precise interpretation of this effect, in terms of a smaller elasticity
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when the differentiation occurs along a single dimension. Finally, we
generalize some of our results to any number of dimensions. Namely,
we show that, independently of the number of dimensions, when μ
becomes smaller than a precise threshold, stores prefer to start
differentiating in only one dimension. This strongly suggests that
minimal differentiation is the rule in any dimension.

2. Optimal store locations in a two dimensional city

2.1. Notation

For our analysis we consider a two-dimensional square city of side
length L occupied uniformly by consumers with unit density.

We model consumers' behavior by the representative consumer's
utility, which can be separated into two parts: a deterministic part
including price and distance, and a stochastic one which characterizes
the consumer's heterogeneity. The deterministic contribution to the
utility of the representative consumer at position J for store S is KJ,S

given by:

KJ;S = R − pS − ad2J;S ð1Þ

where R is the maximum utility of buying the product, assumed to
be high enough to prevent any negative value for KJ,S, pS is the price
of the product at store S, dJ,S the (Euclidean) distance between a
consumer at J and the store at S, and a is the transportation cost
coefficient.

Note that the store positions S1 and S2, as well as the consumer's
positions J are vectors (i.e. J=(jx, jy), etc); and, for simplicity of calcu-
lation, in our analysis we assume these to be continuous variables.

The stochastic contribution to the consumer's utility represents
other factors that enter the choice process. Using the standard “logit”
model (Anderson et al., 1992), we therefore assign a probability for a
consumer at position J to buy at the store located at S as:

δJ;S =
exp KJ;S=μ
� �

∑S′ exp KJ;S′=μ
� � ð2Þ

where μ is the parameter which defines how sharply consumers
discern between the deterministic utilities offered by each site. As
μ→∞ consumers do not discriminate between eligible stores, whereas
if μ→0, consumers exclusively choose the store with the highest KJ,S,
taking only prices and distances into account.

In this situation, the averagemarket DS for the store at S is given by

DS = ∑
J
δJ;S ð3Þ

and the expected profit accrued by this store will be given by:

ΠS = pSDS ð4Þ

2.2. Analytical solution

For definiteness, we list here the precise rules of the system under
consideration:

• First, given any two positions of the stores, S1 and S2, the stores
compete in prices until they reach (Nash) equilibrium; that is, until
any unilateral change in price leads to a lower profit for either store
(stores are not allowed to cooperate). We further assume that stores
know the profits accrued by the equilibrium prices for every pair of
store positions.

• Knowing the equilibrium prices for each pair of sites and the posi-
tion of its competitor, stores then compete for optimal (maximal
profit) location, until they reach (Nash) equilibrium in position.

Now, since we have assumed a unit density of consumers, the
average markets (number of consumers) D1 and D2, attending store 1
and store 2 respectively, will be given by:

D1 = ∫
L=2

− L=2 djx ∫
L=2

− L=2 djy
1

1 + e p1 − p2 + a j J − S1j2 − j J − S2 j2½ �f g=μ and D2 = L2 −D1

ð5Þ

Once the locations S1 and S2 are given, price equilibrium is attained
when

AΠ1

Ap1
j
p2
= 0 and

AΠ2

Ap2
j
p1
= 0 ð6Þ

i.e. when any unilateral change in the price offered by either store
leads to a reduction of the profit gained by that store (of course, the
above equations only reflect that at equilibrium profit is an extremum,
that these extrema aremaximawas checked by numerical simulations
(see below)).

The above are two coupled equations for the prices, fromwhichwe
can determine, in principle, the optimal prices as functions of the store
positions.

Now, equilibrium in the location competition will be achieved
when neither store can increase its profit by changing its own position
given the other store's location. Specifically, as mentioned above,
storeowners know that a change in position will lead to a new set of
prices, and they can evaluate the resulting change in profit accrued in
the new position at the equilibrium prices corresponding to the new
positions.

Thus, equilibrium is achieved when

dΠ1

dx1
;
dΠ1

dy1

� �
= 0 and

dΠ2

dx2
;
dΠ2

dy2

� �
= 0 ð7Þ

where (x1,y1) and (x2,y2) are, respectively, the components of S1 and
S2. Note that we do not restrain equilibrium solutions to remainwithin
the square of length L. Regarding notation we choose to write the
above equations as vectors of total derivatives with respect to the
components of the positions of each store and reserve the gradient as
a vector of partial derivatives to be used below.

From Eq. (4), we can write the equation for price equilibrium for
store 1 as:

p1
AD1

Ap1
+D1 = 0 ð8Þ

then, using Eq. (8), the condition for location equilibrium becomes

dΠ1

dx1
;
dΠ1

dy1

� �
= p1

AD1

Ap2
j1p2 + p1j1D1 = 0 ð9Þ

wherej1 = A=Ax1;A=Ay1ð Þ. Note that, as required in thedescriptionof the
location game, the above expression includes the change in p2 due to the
change of location of store 1. A corresponding equation holds for store 2:

dΠ2

dx2
;
dΠ2

dy2

� �
= p2

AD2

Ap1
j2p1 + p2j2D2 = 0 ð10Þ

From the explicit expression of D1, we have:

Iu
AD1

Ap2
=

1
4μ

∫ L=2− L=2 djx ∫
L=2

− L=2 djy
1

cosh2 p1 − p2 + a j J − S1j2 − j J − S2j2
h in o

=2μ
� �

ð11Þ
whereas

j1D1 =
a
2μ

∫ L=2− L=2 djx ∫
L=2

− L=2 djy
J − S1

cosh2 p1 − p2 + a jJ − S1j2 − jJ − S2j2
h in o

=2μ
� �

ð12Þ
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