

Available online at www.sciencedirect.com

Physica C 432 (2005) 15-24

www.elsevier.com/locate/physc

Effects of oxide particle addition on superconductivity in nanocrystalline MgB₂ bulk samples

Olaf Perner ^{a,b,*}, Wolfgang Häßler ^{a,b}, Jürgen Eckert ^{a,b,c}, Claus Fischer ^{a,b}, Christine Mickel ^{a,b}, Günter Fuchs ^{a,b}, Bernhard Holzapfel ^{a,b}, Ludwig Schultz ^{a,b}

^a IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden, Germany
^b Dresden University of Technology, Department of Physics, Institute for Physics of Solids, D-01062 Dresden, Germany
^c Technische Universität Darmstadt, FB 11 Material- und Geowissenschaften, FG Physikalische Metallkunde,
Petersenstraße 23, D-64287 Darmstadt, Germany

Received 22 June 2005; accepted 13 July 2005 Available online 22 August 2005

Abstract

In order to improve the extrinsic superconducting properties of MgB₂ a combination of nanocrystalline microstructure and particle doping was studied with regard to the enhancement of flux pinning. For comparison, MgO and SiO₂ particles were separately introduced into the MgB₂ matrix by the in situ preparation technique of mechanical alloying. The oxides do not affect the formation of MgB₂ but influence characteristically the critical current density J_c and the irreversibility field $H_{\rm irr}$ in hot pressed bulk samples due to a change of microstructure and lattice constants. Optimal doping levels are 5 wt.% for MgO and 2 wt.% for SiO₂ addition, which lead to improved J_c values of 1.3×10^6 and 1.2×10^6 A/cm² in self-field at 7.5 K, respectively, but do not affect the critical temperature T_c . Microstructural investigations revealed a nanocrystalline MgB₂ matrix with homogeneously distributed impurity particles. © 2005 Elsevier B.V. All rights reserved.

PACS: 74.70.Ad; 74.25.Qt; 74.62.Dh

Keywords: MgB2; Mechanical alloying; Superconductivity; Doping; Flux pinning

One main focus in the investigation of superconductivity in MgB₂, which was discovered by Nagamatsu et al. [1], has been the improvement

^{1.} Introduction

^{*} Corresponding author. Address: IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden, Germany. Tel.: +49 351 46 59 640; fax: +49 351 46 59 541.

E-mail address: o.perner@ifw-dresden.de (O. Perner).

of the properties of this material for potential applications like magnets, cables and superconducting circuits [2,3]. The enhancement of the critical current density as well as the irreversibility field can be achieved by the introduction of pinning centers [4]. For this, different approaches like defect creation by high energy radiation and grain refinement as well as element doping and nanoparticle addition [4,5] were investigated. Dou et al. [6] have introduced the idea of SiC addition, which leads to enhancement of $J_{\rm c}$ and $H_{\rm irr}$ while leaving the critical temperature $T_{\rm c}$ almost unchanged.

In a model of two-band scattering in superconductors like MgB_2 , Gurevich [7] describes the possibility of H_{c2} enhancement by increasing the normal state resistivity as well as by increasing the intraband scattering rates due to substitution on Mg and B sites without affecting T_c .

The effect of MgO particles present in the MgB₂ microstructure was already investigated by different groups [8–10]. Kovác et al. [8] have shown that an enhancement of J_c and H_{irr} can be achieved while leaving T_c almost unchanged. But the improvement of pinning worsens the inter-grain connectivity. Riu et al. [11] studied the influence of SiO₂ on the properties of MgB₂ and found an optimum concentration of 7 at.% for J_c enhancement. Si is doped into the MgB2 lattice cell whereas the formation of Mg₂Si particles leads to nanocomposite material. But the grain size of these particles of about 50 nm is too large to enable an optimum pinning efficiency, which is expected for 10-20 nm sized pinning centers because the coherence length in MgB2 is in the range of 6–7 nm [12].

A combination of different mechanisms to enhance the pinning properties of MgB₂ was the aim of the present work and will be described in detail in the following. The mechanical alloying technique was used for the in situ preparation of MgB₂ starting from magnesium and boron powders with the addition of different fractions of MgO and SiO₂ particles. The idea behind this was to fabricate a nanocrystalline MgB₂ microstructure as well as to achieve a grain size reduction of the oxide particles and their effective incorporation into the MgB₂ matrix. Whereas MgO is always found as a secondary phase in

 MgB_2 , which forms due to the presence of small amounts of oxygen in the working atmosphere [13], SiO_2 can be regarded as a real impurity phase whose influence on the superconductivity in MgB_2 is more complex [11].

The phase formation of MgB_2 as well as the superconducting properties in dependence of the microstructure were studied. In fact, we find a different behaviour of MgO and SiO_2 addition in dependence on the doping content on the properties of MgB_2 . Slight additions of these impurities were found to improve the pinning properties without changing T_c . In contrast, larger amounts of MgO and SiO_2 deteriorate the superconducting properties due to a change of the microstructure and the grain connectivity.

2. Experimental

The preparation of MgB_2 using the mechanical alloying (MA) technique was carried out with elementary amorphous boron (1 μ m particle size, 99.99% purity, Alfa Aesar) and magnesium (250 μ m maximum particle size, 99.9% purity, Goodfellow) powders in the stoichiometric composition. Furthermore, MgO (45 μ m maximum particle size, 99.5% purity, Alfa Aesar) and SiO₂ (45 μ m maximum particle size, 99.8% purity, Chempur) powders were added resulting in a phase fraction between 2–10 wt.% and 2–20 wt.%, respectively.

Mechanical alloying was done in a Retsch PM 400 planetary ball mill with milling tools made of tungsten carbide (WC) in a highly purified argon atmosphere with the following parameters: 50 h milling time, 250 rpm rotational speed, ball-to-powder mass ratio of 36:1. Further details are described elsewhere [13,14].

In order to receive highly densified bulk samples the as-milled and partially reacted MgB₂ powder was hot pressed in a vacuum chamber at a temperature of 973 K under a pressure of 500 MPa for 10 min (for further details, see [13,14]).

Phase analysis was performed using a Philips X'Pert PW 3040 X-ray diffractometer with Co K_{α} radiation. Rietveld refinement [15] of the obtained X-ray diffraction patterns using MgB₂, Mg, MgO, SiO₂, Mg₂Si and WC peaks allowed to determine

Download English Version:

https://daneshyari.com/en/article/9841561

Download Persian Version:

https://daneshyari.com/article/9841561

<u>Daneshyari.com</u>