

Available online at www.sciencedirect.com

Physica C 432 (2005) 53-58

www.elsevier.com/locate/physc

Investigations on preparation, upper critical field and low temperature thermal expansion of LiTi₂O₄ superconductor

H.X. Geng *, A.F. Dong, G.C. Che, W.W. Huang, S.L. Jia, Z.X. Zhao

National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China

Received 19 April 2005; received in revised form 6 June 2005; accepted 14 July 2005 Available online 25 August 2005

Abstract

A new preparation route for LiTi₂O₄ superconductor was presented. The upper critical field and low temperature thermal expansion of LiTi₂O₄ were investigated. The upper critical field $H_{C2}(0)$ determined by the measurements of resistance and magnetization versus temperature are 8.9 ± 0.5 T and 9.3 ± 0.3 T, respectively. The linear coefficient of thermal expansion in the temperature range of 90–298 K determined by low temperature X-ray diffraction is $7.97(\pm 0.13) \times 10^{-5}$ K⁻¹.

© 2005 Elsevier B.V. All rights reserved.

PACS: 74.70.Dd; 74.25.Fy; 74.25.Op

Keywords: LiTi2O4; Preparation; Low temperature thermal expansion; Upper critical field

1. Introduction

LiTi₂O₄ superconductor with the spinel structure and $T_{\rm C} \sim 12$ K was discovered by Johnston in 1973 [1]. This superconductor is still interesting due to some unusual properties in both physical and chemical respects. The preparation and crystal structure of the superconductor have been investigated in Refs. [2–12]. In previous publications, the polycrystalline LiTi₂O₄ superconductor was prepared by solid state reaction method using the starting materials of Li₂Ti₂O₅ + Ti₂O₃ + TiO₂, or Li₂CO₃ + TiO₂ and Li₂CO₃ + TiO₂ + Ti, with a more complex procedure. The upper critical field $H_{C2}(0)$ (2–32.8 T) of LiTi₂O₄ was reported by several groups [3,5,8]. Recently, the $H_{C2}(0)$ of LiTi₂O₄ determined by specific heat measurement is 11.7 T in Ref. [13].

In this paper, a new preparation route for LiTi_2O_4 superconductor was presented. The upper critical field and low temperature thermal expansion of LiTi_2O_4 superconductor were investigated.

^{*} Corresponding author. Tel.: +86 01082649192; fax: +86 01082649486.

E-mail address: ghxia@ssc.iphy.ac.cn (H.X. Geng).

^{0921-4534/\$ -} see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2005.07.009

2. Experimental

Ceramic LiTi₂O₄ samples were prepared by a new preparation route. The chemical reagent TiO and Li₂Ti₃O₇ monocrystal powders with the purities better than 99.99% were used as the starting materials. The preparation method of TiO was reported (see the powder diffraction file (23-1078)). The stoichiometric powders were mixed, ground, pelletized and calcined in an evacuated quartz tube at 805 °C for 50 h, then cooled slowly to room temperature, according to the chemical reaction:

$2Li_2Ti_3O_7 + 2TiO = 4LiTi_2O_4$

The phase structure of the prepared samples were characterized by powder X-ray diffraction (XRD) analysis on an MXP18A-HF-type diffractometer with Cu-K_{α} radiation. Powder X program was used for lattice parameter calculations. DCmagnetization *M* and electrical resistance *R* were measured versus temperature *T* using a DC-SQUID magnetometer and four-probe technique, respectively. Low temperature linear thermal expansion was investigated by powder X-ray diffraction at low temperature on Rigaku D/ max-2500 diffractometer with Cu-K_{α} radiation (40 kV × 200 mA) and a graphite monochromator.

3. Results and discussion

3.1. Sample characterization

The used Li₂Ti₃O₇ monocrystal was grown by Czochralski technique in our institute. Li₂CO₃ and TiO₂ with purities better than 99.99% were used as the starting materials. This crystal has lightly yellow color and is a transparent body. The XRD pattern of the monocrystal powder is shown in Fig. 1. Its lattice parameter $a = 5.015 \pm$ 0.004 Å, $b = 9.539 \pm 0.004$ Å, $c = 2.946 \pm 0.005$ Å, which is agreement with those of a =5.0182 Å, b = 9.5523 Å, c = 2.9455 Å reported in the powder diffraction file (34-393), indicating that the crystal has good quality.

The composition (Li 40 mol% and Ti 60 mol%) of $Li_2Ti_3O_7$ is the closest to that (Li 33.3 mol% and Ti 66.7 mol%) of $LiTi_2O_4$ among the compounds

Fig. 1. XRD pattern of Li₂Ti₃O₇ monocrystal powder.

in Li_2O-TiO_2 system. This preparation route is beneficial to repress the volatilization of Li component, to control the composition of $LiTi_2O_4$ superconductor and to simplify preparing processes.

Fig. 2 shows the XRD pattern of the prepared LiTi₂O₄ superconductor, indicating that it is single phase. Its lattice parameter $a = 8.400 \pm 0.002$ Å, which is good agreement with that (8.405 Å) of LiTi₂O₄ with stoichiometric composition [5]. R-T and M-T curves of the prepared LiTi₂O₄ are shown in Figs. 3 and 4, indicating that $T_{\rm C}$ is 12.1 K, $\Delta T = 0.3$ K and superconducting transition is very sharp.

Fig. 2. XRD pattern of LiTi₂O₄.

Download English Version:

https://daneshyari.com/en/article/9841565

Download Persian Version:

https://daneshyari.com/article/9841565

Daneshyari.com