

Physica C 426-431 (2005) 1244-1248

www.elsevier.com/locate/physc

Effects of ZrH₂ doping and sintering temperature on the critical current density of MgB₂ wires

H.L. Xu a,b,c,*, Y. Feng b, Z. Xu a, C.S. Li b, G. Yan b, Y.F. Wu b, Z.L. Chen b, E. Mossang d, A. Sulpice e

^a School of Material Science and Engineering, Tongji University, Shanghai 200092, PR China
 ^b Superconducting Material Research Center, Northwest Institute for Nonferrous Metal Research, P.O. Box 51, No. 96, Weiyang Road, Xîan, Shaanxi 710016, PR China
 ^c School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450002, PR China

^d LCMI, CNRS, 25 avenue des Martyrs BP166, 38042 Grenoble Cedex 9, France
^c CRTBT, CNRS, 25 avenue des Martyrs BP166, 38042 Grenoble Cedex 9, France

Received 23 November 2004; accepted 4 March 2005 Available online 15 July 2005

Abstract

 ZrH_2 -doped MgB₂ wires, with the composition of Mg: ZrH_2 :B = (1-x):x:2 (x = 0%, 5%, 8%, 10%, 12%, 15%), were fabricated through the in situ powder-in-tube method by using low carbon steel tubes as sheath materials. Samples were sintered at 700 °C, 750 °C, 800 °C and 900 °C for 2 h respectively in a flow of high purity argon. It is found that the amount of ZrB_2 increases with the doping ratio, and the content of Fe_2B increases with the sintering temperature. Critical current density (J_c) of all the doped samples decreases with the increase of sintering temperature, but the optimum doping ratio goes up correspondingly. Among all the doped samples, the samples of x = 5% and x = 8% exhibit better J_c properties at the sintering temperature of 700 °C, but the samples of x = 10%, 12% and 15% present higher J_c values when sintered at 900 °C.

© 2005 Elsevier B.V. All rights reserved.

PACS: 74.70.Ad; 74.62.Dh; 74.62.Bf; 74.25.Sv

Keywords: MgB₂ wires; ZrH₂ doping; Sintering temperature; Critical current density

E-mail address: xhlxhl@zzu.edu.cn (H.L. Xu).

1. Introduction

The discovery of superconductivity in MgB₂ with critical temperature of 39 K [1] has stimulated a lot of interests from scientists. Compared with

^{*} Corresponding author. Address: Superconducting Material Research Center, Northwest Institute for Nonferrous Metal Research, P.O. Box 51, No. 96, Weiyang Road, Xi'an, Shaanxi 710016, PR China. Tel.: +86 29 86231079; fax: +86 29 86224487.

high temperature superconductors, MgB₂ has no weak-link problem at grain boundaries [2], and the cost of raw materials is low. Therefore, MgB₂ is believed a promising candidate for the engineering applications in the temperature range of 20–30 K.

Many methods have been tried to fabricate MgB₂ wires [3–8], in which powder-in-tube (PIT) technique is an effective one. However, the critical current density (J_c) of MgB₂ usually decreases rapidly with the increase of magnetic field (B), due to the lack of pinning centers. Fortunately, it is reported that chemical doping can improve the J_c and flux pinning of MgB₂ superconductors effectively [9-13]. Ma et al. [13] demonstrated that the J_c of MgB₂/Fe tape had been improved by the 5 at% doping of ZrSi2, ZrB2 and WSi2, respectively, but the doping ratios have not been optimized in their investigation. Feng et al. [11] confirmed that all the Zr-doped MgB₂ bulk samples have better performance than the undoped one, and the highest J_c of 2.1×10^6 A/cm² in 0.56 T at 5 K and 1.83×10^6 A/cm² in self-field at 20 K had been achieved in the Mg_{0.9}Zr_{0.1}B₂ sample.

In this paper, MgB_2 wires were fabricated by using ZrH_2 as dopant. As ZrH_2 decomposes to be Zr and H_2 at high temperature, we believe it can act as good as Zr powders for the improvement of MgB_2 performances. Therefore, we have paid our attentions to the optimum doping ratio of ZrH_2 and its relation with the sintering temperatures.

2. Experimental

ZrH₂-doped MgB₂ wires were fabricated by using the in situ PIT method. Mg (100–200 mesh, 99%), ZrH₂ (1250 mesh, 90%) and B (325 mesh, 99%) powders with the composition of (1-x): x:2 (doping ratio x = 5%, 8%, 10%, 12%, 15%) were ground together in agate mortar for 3 h in air. Mixtures were properly filled into low carbon steel tubes (outer diameter: 16 mm, inner diameter: 12 mm). These composite tubes were grooverolled, with four times of intermediate annealing performed at 400 °C, 450 °C, 590 °C and 580 °C for 1 or 2 h, respectively, to recover the plasticity and ductility of the low carbon steel. Subse-

quently, they were drawn to wires with the diameter of 1.6 mm. In the end, short samples were heated up to 700 °C, 750 °C, 800 °C, 900 °C and sintered for 2 h respectively in a flow of high purity argon. Then furnace-cooled to room temperature. Undoped MgB₂ wire (x=0) was fabricated by using the same method, but only having two times of intermediate annealing at 590 °C and 580 °C, respectively.

Phase identification was performed by using the X-ray diffractometer. Microstructure analysis was carried out by scanning electron microscopy (SEM). Critical current (I_c) was measured by the standard four-probe resistance method in magnetic fields up to 7 T at 4.2 K. The criterion for the I_c definition was 1 μ V/cm. J_c was obtained by dividing I_c by the cross-sectional area of the superconducting core.

3. Results and discussion

Fig. 1 illustrates X-ray diffraction (XRD) patterns of x mol ZrH₂-doped samples. MgB₂, ZrB₂, MgO, Fe₂B, δ -ZrH₂ and Mg can be identified in the samples sintered at 700 °C. The appearance of ZrB₂ is because that ZrH₂ decomposed and reacted with B during the sintering process, as shown following:

$$ZrH_2 \rightarrow Zr + H_2$$

 $Zr + 2B \rightarrow ZrB_2$

As the relative peak intensity of ZrB_2 increases with the increasing of x, we believe the amount of ZrB_2 rises up correspondingly. However, the existence of δ - ZrH_2 indicates that ZrH_2 did not decompose thoroughly when sintered at 700 °C.

Fe₂B appears mainly as the interface layer between the sheath materials and the superconducting core. It is the formation of Fe₂B that consumed some B atoms and led to the surplus of Mg.

As the sintering temperature increasing, the phase compositions of these samples change slightly. No δ -ZrH₂ can be found in all samples sintered at 750 °C, such as shown in the sample x = 8%. MgB₄ appears in the samples sintered above 850 °C, especially at 900 °C. The concentration of

Download English Version:

https://daneshyari.com/en/article/9841641

Download Persian Version:

https://daneshyari.com/article/9841641

<u>Daneshyari.com</u>