

www.elsevier.com/locate/rie

ECONOMICS

RESEARCH IN

Research in Economics 62 (2008) 122-177

Nonlinear difference equations, bifurcations and chaos: An introduction

Jean-Michel Grandmont*

ICEF, University Ca' Foscari, Venezia, Italy CREST-GRECSTA (UMR CNRS 2773). Paris. France

Abstract

The aim of these lecture notes is to present a few mathematical facts about the bifurcations of nonlinear difference equations, in a concise and simple form that might be useable by economic theorists.

© 2008 University of Venice. Published by Elsevier Ltd. All rights reserved.

Keywords: Nonlinear dynamics; Bifurcations; Chaos; Business cycles

1. Preliminaries

We state first a few more or less elementary facts about matrices and differentiable maps, that are used repeatedly in this article.

We recall that \mathbb{R}^m is the set of all *m*-tuples of real numbers. A "point" or a "vector" of \mathbb{R}^m is $x = (x_1, \dots, x_m)$; the number x_i is the *i*th *coordinate* of the vector. Vectors x, y are added coordinatewise

$$x + y = (x_1, \dots, x_m) + (y_1, \dots, y_m) = (x_1 + y_1, \dots, x_m + y_m).$$

If α is a real number, the product αx is the vector $(\alpha x_1, \ldots, \alpha x_m)$. \mathbb{R}^m is then an m-dimensional real vector space. Its *standard basis* is the collection of vectors (e_1, \ldots, e_m) , in which for each $i = 1, \ldots, m$, e_i is the vector of coordinates $e_{ij} = \delta_{ij}$, $j = 1, \ldots, m$, where δ_{ij} is the Kronecker function, that is $\delta_{ij} = 0$ if $i \neq j$ and 1 if i = j. Any vector $x = (x_1, \ldots, x_m)$ has then a unique representation as a linear combination of the vectors e_i of the standard basis, that is $x = \sum_i x_i e_i$. A *norm* is a real valued function $\|.\|$ defined on \mathbb{R}^m , with $\|x\| \ge 0$, such that $\|\alpha x\| = |\alpha| \|x\|$, $\|x + y\| \le \|x\| + \|y\|$, and $\|x\| = 0$ if and only if x = 0. The *Euclidean norm* will be denoted $|x| = (\sum_i x_i^2)^{1/2}$.

1.1. Matrix algebra

A square *matrix* of dimension m, i.e. a collection of m^2 real numbers $A = [a_{ij}]$, where i = 1, ..., m stands for the index of the *i*th row of the matrix, and j = 1, ..., m stands for its *j*th column, defines a *linear transformation* (or

^{*} Corresponding address: CREST-CNRS, 15, Boulevard Gabriel Peri, 92245 Malakoff, France. *E-mail address:* Jean-Michel.Grandmont@ensae.fr.

map) T from \mathbb{R}^m into itself, that associates to every vector $x = (x_1, \ldots, x_m)$ a new vector x' = Tx of coordinates $x_i' = \sum_j a_{ij}x_j$, for $i = 1, \ldots, m$, or in matrix notation, x' = Ax. Then if e_1, \ldots, e_m is the standard basis of \mathbb{R}^m , the vector represented by the jth column of A, i.e. $a^j = (a_{1j}, \ldots, a_{mj})$, is the image of e_j by T (or A), that is $a^j = Te_j = Ae_j$. The image x' = Ax of any vector $x = (x_1, \ldots, x_m)$ is the linear combination of the vectors a^j , with weights x_j :

$$x' = A\left(\sum_{j} x_{j} e_{j}\right) = \sum_{j} x_{j} a^{j}.$$

Conversely, any linear transformation T from \mathbb{R}^m into itself can be (uniquely) represented by the matrix $A = [a_{ij}]$, in the standard basis, where the jth column $a^j = (a_{1j}, \ldots, a_{mj})$ of the matrix A is the image by T of the vector e_j . It follows from these remarks that a matrix A is *invertible* if and only if the corresponding linear transformation T is onto (i.e. the image of \mathbb{R}^m by T is \mathbb{R}^m itself) or equivalently, if and only if the m vectors a^j are *linearly independent* (i.e. $\sum_j \alpha_j a^j = 0$ implies $\alpha_j = 0$ for all j).

A given linear transformation T of \mathbb{R}^m into itself has different equivalent matrix representations, according to which basis of \mathbb{R}^m is chosen. Consider a *new basis* of \mathbb{R}^m , i.e. a collection of m vectors $\overline{e}_1, \ldots, \overline{e}_m$, that are linearly independent. Let (p_{1j}, \ldots, p_{mj}) be the coordinates of \overline{e}_j in the standard basis, and P stand for the matrix of which the jth columns is \overline{e}_j , i.e. $P = [p_{ij}]$. We know from the previous paragraph that P has an inverse P^{-1} . A vector of \mathbb{R}^m of which the coordinates in the old (standard) basis are $x = (x_1, \ldots, x_m)$, has coordinates $y = (y_1, \ldots, y_m)$ in the new basis. That is, this vector can be (uniquely) expressed as a linear combination of the vectors \overline{e}_j of the new basis, with weights y_j , i.e. $\sum_j y_j \overline{e}_j$. The relationship between new and old coordinates is obtained from the vector equalities

$$\sum_{i} x_{i} e_{i} = \sum_{j} y_{j} \overline{e}_{j} = \sum_{j} y_{j} \left(\sum_{i} p_{ij} e_{i} \right),$$

which imply $x_i = \sum_j p_{ij} y_j$ for all i, or in matrix notation, x = Py, $y = P^{-1}x$.

A given linear transformation T is represented, in matrix notation, by the map $x \to x' = Ax$ in the standard basis, and by $y \to y' = Bx$ in the new basis. Analytically, the matrix B is obtained from A by making the change of variables x = Py, which yields $B = P^{-1}AP$. Here again, the j-column of B represents the coordinates, in the new basis, of the image of \overline{e}_j by T.

A linear transformation T of \mathbb{R}^m into itself may thus be given a convenient matrix representation, by choosing an appropriate basis. The remainder of this section is devoted to such a matrix representation, the *real canonical* (or *Jordan*) form of T.

We look first at the circumstances ensuring that T has a *block diagonal* matrix representation. Let E_1, \ldots, E_r be a collection of (linear) subspaces of \mathbb{R}^m , i.e. each E_h is a subset of \mathbb{R}^m that is closed under the operations of addition and scalar multiplication: if x, y are vectors of E_h and α a real number, then x + y and αx belong also to E_h . Assume that any vector x of \mathbb{R}^m has a unique representation of the form $x = x_1 + \cdots + x_r$, in which x_h is in E_h for each h. We say then that \mathbb{R}^m is the *direct sum* of the linear subspaces. Assume further that each subspace E_h is *invariant* by T, i.e. if x belongs to E_h , then Tx is also in E_h . Choose now a basis for each E_h , and take the union of the basis elements of the E_h to obtain a basis for \mathbb{R}^m . In that basis, T has the block diagonal form

$$B = \operatorname{diag}\{B_1, \ldots, B_r\} = \begin{bmatrix} B_1 & & \\ & \ddots & \\ & & B_r \end{bmatrix}.$$

This means that the matrix B_h are put together corner-to-corner diagonally as indicated, all other entries in B being zero (we adopt the convention that the blank entries in a matrix are zeros). Each matrix B_h represents in fact the restriction T_h of T to the invariant suspace E_h .

Conversely, assume that \mathbb{R}^m has a basis in which T has a matrix representation of the above block diagonal form. Let E_h be the linear subspace spanned by the vectors of the basis, the images of which are the columns of the matrix B associated to the submatrix B_h . Then E_h is invariant by T, and \mathbb{R}^m is the direct sum of the E_h . To sum up,

Download English Version:

https://daneshyari.com/en/article/984411

Download Persian Version:

https://daneshyari.com/article/984411

<u>Daneshyari.com</u>