ELSEVIER

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research A 538 (2005) 640-650

www.elsevier.com/locate/nima

Study of large area Hamamatsu avalanche photodiode in a γ -ray scintillation detector

T. Ikagawa^{a,*}, J. Kataoka^a, Y. Yatsu^a, T. Saito^a, Y. Kuramoto^a, N. Kawai^a, M. Kokubun^b, T. Kamae^c, Y. Ishikawa^d, N. Kawabata^d

^aTokyo Institute of Technology, 2-12-1 Ohokayama, Meguro, Tokyo 152-8551, Japan ^bUniversity of Tokyo, Tokyo, Japan ^cStanford Linear Accelerator Center, Menlo Park, CA, USA ^dHamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan

Received 25 May 2004; received in revised form 24 August 2004; accepted 10 September 2004 Available online 27 October 2004

Abstract

We have carried out study of a large area $(10 \times 10 \text{ mm}^2)$, reverse-type avalanche photodiode (APD) recently developed by Hamamatsu photonics. It has low dark current of 3 nA at room temperature, and the gain stability was almost the same as prototypical APDs reported in our previous paper. We studied the performance as a γ -ray detector with four scintillators, CsI(Tl), BGO, GSO(Ce), and YAP(Ce) crystals. For example we obtained the best energy resolution of $4.9 \pm 0.2\%$ (FWHM) for 662 keV γ -rays, as measured with a $10 \times 10 \times 10 \text{ mm}^3$ CsI(Tl) crystal. The minimum detectable energy was as low as 10 keV at 20° C and 3.1 keV at -20° C. Thanks to its large effective area, this APD can effectively read out photons from larger size scintillators. When coupling to a $300 \times 48 \text{ mm}^2$ BGO plate of 3 mm thickness, an FWHM energy resolution of $20.9 \pm 0.2\%$ was obtained for 662 keV γ -rays, with the minimum detectable energy of about 60 keV at -15° C. These results suggest that our prototype APD can be a promising device for various applications replacing traditional PMTs such as use in space for Japan's future X-ray astronomy mission *NeXT*.

© 2004 Elsevier B.V. All rights reserved.

PACS: 07.85; 95.55.A; 85.60.D

Keywords: Avalanche photodiode; y-rays; Scintillation detection

1. Introduction

In recent years, avalanche photodiodes (APDs) have attracted considerable attention as X-rays and γ -rays scintillation detectors in nuclear

^{*}Corresponding author. Tel./Fax : +81 5734 2388.

E-mail addresses: ikagawa@hp.phys.titech.ac.jp

⁽T. Ikagawa), kataoka@hp.phys.titech.ac.jp (J. Kataoka).

^{0168-9002/\$ -} see front matter 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.nima.2004.09.021

physics. Compared with photomultiplier tubes (PMTs), APDs are compact, less sensitive to the magnetic field, and have rugged structures. Moreover, they have an excellent quantum efficiency (QE) ($\geq 80\%$) in the visible and near infrared. In previous works, three types of APDs, beveled edge, reach-through and reverse-type have been intensively studied [1,2], reverse-type APDs are the improved version of reach-through APDs [4]. They have a narrow, high-field multiple region close to the surface, which enables to obtain sufficient internal gain under relatively low bias voltage (~400 V [12]). In particular, reverse-type APDs have a good advantage of significantly, reducing dark noise, since the thermal electrons do not amplify inside the device. It has also been shown that reverse-type APDs are tolerant of

[3.11]. In our previous paper, we have reported that Hamamatsu reverse-type APD, S8664-55, works at relatively low bias voltage of 300-350 V and have remarkably low dark current of ~1 nA at room temperature. Their high QE and internal gain allow us to obtain good energy resolutions especially for the low-energy scintillation detection when coupled to CsI(Tl) crystals [5]. For example, the best FWHM resolutions of $9.4 \pm 0.3\%$ was obtained for 59.5 keV γ -rays from a ²⁴¹Am source. 5.9 keV X-rays were clearly resolved at -20°C with an energy resolution of $32.9 \pm 0.3\%$. In spite of many advantages, APDs have not been used widely because of their small effective area: commercial products of Hamamatsu APDs (S8664-55) have surface of $5 \times 5 \text{ mm}^2$ at the maximum. To increase their effective area facilitates reading out X-rays and γ -rays with larger size scintillators and hence raises new possibilities for further applications.

nuclear radiation by CMS calorimeter in CERN

Recently we have developed larger area, reversetype APD $(10 \times 10 \text{ mm}^2)$ with Hamamatsu photonics. In this paper, we study the basic properties and performance as a γ -ray scintillation detector. In Section 2, we evaluate its basic parameters, such as gain stability and an excess noise factor. In Section 3 we examine the performance as a scintillation detector coupled with four small scintillators, CsI(Tl), BGO, GSO(Ce), and YAP(Ce) crystals. As an application, we use this APD to read out a large BGO plate scintillator $(300 \times 48 \text{ mm}^2; 3 \text{ mm} \text{ thickness})$, which we plan to use for Japan's sixth X-ray astronomy mission *NeXT* (New X-ray Telescope) to effectively reject background γ -ray/particle events. Finally, we summarize our results in Section 4.

2. Properties of Hamamatsu APD: S8664-1010N

We have made two samples of large area (10 \times 10 mm²) APD with Hamamatsu photonics (S8664-1010N). This APD is developed on the technical base of S8664-55 (5 \times 5 mm²), except that the dead laver of S8664-1010N is thinner than that of S8664-55 [5]. These APDs have a narrow multiple region close to the front of the device, with a peak field only 7 µm deep. The Si wafer is placed on a ceramic board and the surface is coated with epoxy resin. The basic parameters of S8664-1010N are shown in Table 1. At a gain of 50, the leakage current is as low as 2.4/3.4 nA at 20°C and decreases to 52/60 pA at -20°C . The detector capacitance is 266/268 pF, which is about three times larger than that of S8664-55 [5]. The OE is more than 80% between 500 and 830 nm and hence most sensitive at visible and near infrared. The OE decreases at ultraviolet due to absorption by the surface window.

2.1. Gain characteristics

Table 1

As has been reported in the literatures, gain characteristics of APDs depend both on the bias

Parameters of Hamamatsu APD (S8664-1010N: 2 pieces)	
$10 \times 10 \mathrm{mm^2}$	
Epoxy resin	
3.4, 2.4 nA	
52, 60 pA	
426, 433 V	
376, 381 V	
268, 266 pF	
$\geq 80\%$ (500-830 nm) 60% (390 nm, 930 nm)	

^aMeasured at a gain of 50.

Download English Version:

https://daneshyari.com/en/article/9845809

Download Persian Version:

https://daneshyari.com/article/9845809

Daneshyari.com