

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research A 537 (2005) 61-65

www.elsevier.com/locate/nima

Emission decay kinetics in a CaWO₄:Bi crystal

V. Nagirnyi^{a,*}, A. Kotlov^a, L. Jönsson^b, M. Kirm^c, A. Lushchik^a

^aInstitute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia ^bPhysics Department, Lund University, Lund, Sweden ^cInstitute of Experimental Physics, Hamburg University, Hamburg, Germany

Available online 23 August 2004

Abstract

The decay kinetics of the 2.88 eV emission of pure and Bi-doped CaWO₄ crystals has been studied in the temperature region of 4.2–300 K. The decay components connected with the radiative transitions from the triplet excited states of regular WO_4^{2-} oxyanionic complexes and WO_4^{2-} complexes perturbed by Bi³⁺ ions ($WO_4^{2-}(Bi^{3+})$ centres) have been identified. It is shown that $WO_4(Bi^{3+})$ centres can be excited directly above the edge of the fundamental absorption of CaWO₄, or due to the energy transfer from the metastable state of a Bi³⁺ ion at the excitation in the Bi³⁺ absorption band at 4.4 eV. At temperatures T > 170 K, the excited state of the $WO_4^{2-}(Bi^{3+})$ centre is thermally ionised, giving rise to phosphorescence in the blue spectral region. These processes are compared with those known for excitons in PbWO₄ crystals. © 2004 Elsevier B.V. All rights reserved.

PACS: 71.20.Ps; 71.35.Aa; 71.55.Ht; 78.55.Hx

Keywords: CaWO₄:Bi; Emission decay kinetics; Energy transfer; Triplet states

1. Introduction

Based on a comparative study of PbWO₄ and CaWO₄:Bi crystals, we have suggested that relaxation processes between cationic and anionic states make an essential contribution to the relaxation of electronic excitations in these materials [1]. The CaWO₄:Bi crystal was used as a model system for studying the role of cationic states (cation excitons) in the relaxation of electronic excitations in PbWO₄. It has been assumed that in CaWO₄:Bi

an efficient energy transfer from cationic impurity states to the WO_4 complex takes place even at the excitation within the Bi^{3+} states situated in the forbidden gap of the CaWO₄ crystal. Our recent investigation of the decay kinetics of the main emission of pure and Bi-doped CaWO₄ crystals allowed us to confirm this model.

2. Experimental methods

Single CaWO₄:Bi crystals were grown by the flux method at Chalmers University of Technology, Gothenburg, Sweden. During the growth,

^{*}Corresponding author. Fax: +372-7-383033.

E-mail address: vetal@fi.tartu.ee (V. Nagirnyi).

^{0168-9002/\$ -} see front matter 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.nima.2004.07.235

 Na^+ ions were introduced into the crystals to provide a local compensation of the Bi^{3+} extra charge.

Time-resolved spectra were measured by using a Perkin-Elmer FX-1152 Flashtube (pulse duration 1 µs) and an Ortec MCS-PCI Card with 100 ns time resolution. Two double-quartz monochromators were used to select the excitation and the emission wavelength. Each measured decay curve was decomposed into exponential components with characteristic decay times τ_i . The light sum (integral intensity) of each component was calculated as $S_i = A_{0i}\tau_i$, where A_{0i} is the corresponding initial amplitude. Temperature dependences or spectra of S_i and τ_i were analysed.

3. Results and discussion

It has been shown that Bi^{3+} centres possess an absorption band peaking at 4.4 eV in the transparency region of CaWO₄ [1]. Optical excitation in this band at 4.2 K produces an emission band at 2.75 eV that is spectrally close to the main 2.88 eV emission of the crystal. To verify the suggestion that the new emission band originates from the WO₄ oxyanionic complexes perturbed by Bi³⁺ ions [1], we compared the decay kinetics of the emission near 2.8 eV of a CaWO₄:Bi crystal at three excitation energies: within the fundamental absorption region at 5.5 eV, slightly above the fundamental absorption edge at 5 eV and in the Bi^{3+} absorption band at 4.4 eV. The decay curves measured at the specified excitation energies at 4.2 K and the results of their decomposition into single exponential components are shown in Fig. 1. From excitation at 5.5 eV, we find the value of the decay time (τ_1) of the 2.8 eV emission of CaWO₄:Bi to be equal to $360 \,\mu s$ (curve 1,1') and it coincides with that of the main emission in pure CaWO₄. At the excitation at $5.0 \,\text{eV}$, the $360 \,\mu\text{s}$ component (we label it C_1) is observed along with a shorter one (C₂) with the decay time $\tau_2 = 74 \,\mu s$ (curves 2, 2', 2"). At the excitation in the Bi^{3+} absorption band the same C_2 decay component is observed, whereas it is preceded by a 9 µs rise in the decay curve (curve 3, 3''). The spectrum of the

light sum of the rise component coincides with that of the C_2 component.

As the temperature rises the decay time τ_1 sharply shortens to about 25 µs at 60 K (Fig. 2, curve 1), while the light sum of this component remains nearly constant. Starting from 60 K there is a plateau in the temperature dependence of τ_1 ,

Fig. 1. Decay curves of the 2.88 eV emission of CaWO₄:Bi measured at T=4.2 K for excitation energies $E_{\text{exc.}}=5.5$ eV (1), $E_{\text{exc.}}=5.0$ eV (2), $E_{\text{exc.}}=4.4$ eV (3). The solid lines 1', 2', 2" and 3" represent the C_1 (1', 2') and C_2 (2", 3") decay components calculated using parameters obtained from decomposition of the corresponding decay curves into single exponential components.

Fig. 2. Temperature dependences of the decay time (1, 2) and the light sum (2') of the C_1 (1) and C_2 (2, 2') components and of the rise time (3) of the 2.8 eV emission of CaWO₄:Bi for the excitation energies 5.0 (1) and 4.4 eV (2, 2', 3). Curve 4 gives the temperature dependence of the background under the decay curve at 4.4 eV excitation (see the text for details).

Download English Version:

https://daneshyari.com/en/article/9845853

Download Persian Version:

https://daneshyari.com/article/9845853

Daneshyari.com