

Available online at www.sciencedirect.com

Nuclear Physics A 763 (2005) 80-89

The $\pi \to \pi \pi$ process in nuclei and the restoration of chiral symmetry

CHAOS Collaboration

N. Grion^{a,*}, M. Bregant^{a,b}, P. Camerini^{a,b}, E. Fragiacomo^{a,b}, S. Piano^{a,b},
R. Rui^{a,b}, E.F. Gibson^c, G. Hofman^g, E.L. Mathie^d, R. Meier^e,
M.E. Sevior^f, G.R. Smith^{g,1}, R. Tacik^d

^a Istituto Nazionale di Fisica Nucleare, 34127 Trieste, Italy
^b Dipartimento di Fisica dell'Università di Trieste, 34127 Trieste, Italy
^c California State University, Sacramento, CA 95819, USA
^d University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
^e Physikalisches Institut, Universität Tübingen, 72076 Tübingen, Germany
^f School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia
^g TRIUMF, Vancouver, BC, V6T 2A3, Canada

Received 25 January 2005; received in revised form 8 August 2005; accepted 23 August 2005

Available online 15 September 2005

Abstract

The results of an extensive campaign of measurements of the $\pi \to \pi\pi$ process in the nucleon and nuclei at intermediate energies are presented. The measurements were motivated by the study of strong $\pi\pi$ correlations in nuclei. The analysis relies on the composite ratio $C^A_{\pi\pi}$, which accounts for the clear effect of the nuclear medium on the $\pi\pi$ system. The comparison of the $C^A_{\pi\pi}$ distributions for the $(\pi\pi)_{I=J=0}$ and $(\pi\pi)_{I=0,J=2}$ systems to the model predictions indicates that the $C^A_{\pi\pi}$ behavior in proximity of the $2m_{\pi}$ threshold is explainable through the partial restoration of chiral symmetry in nuclei. © 2005 Elsevier B.V. All rights reserved.

PACS: 25.80.Hp

Keywords: NUCLEAR REACTIONS ¹H($\pi^-, \pi^+\pi^-$), ($\pi^+, 2\pi^+$), E = 243, 264, 284, 305 MeV; ²H, ¹²C, ⁴⁰Ca, ²⁰⁸Pb($\pi^+, 2\pi^+$), ($\pi^+, \pi^+\pi^-$), E = 283 MeV; Sc($\pi^+, 2\pi^+$)X, ($\pi^+, \pi^+\pi^-$)X, E = 243, 264, 284, 305 MeV;

* Corresponding author.

0375-9474/\$- see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.nuclphysa.2005.08.017

E-mail address: nevio.grion@ts.infn.it (N. Grion).

¹ Present address: Jefferson Lab, Newport News, VA 23006, USA.

measured invariant mass distributions, $C^{A}_{\pi\pi}$ composite ratio determined; deduced partial chiral symmetry restoration.

1. Introduction

Spectral properties of pion pairs interacting in the I = J = 0 channel (the σ -channel) are predicted to vary significantly from the vacuum to nuclear matter as a consequence of the partial restoration of chiral symmetry. As an example, the vacuum spectral function of σ , a broad $(\Gamma \sim 500 \text{ MeV})$ resonance centered at $\sim 500 \text{ MeV}$, substantially reshapes in nuclear matter by forming a peak-like structure at around $2m_{\pi}$ [1–3]. The underlying theory regards the σ meson as a $\bar{q}q$ excitation of the QCD vacuum, in which the spontaneous breaking of the chiral symmetry leads to the σ - π mass difference. The sigma ($J^P = 0^+$) is also the chiral partner of the pion ($J^P = 0^-$). When the properties of the σ meson are studied in nuclear matter, the theory predicts a substantial change of the σ spectral function, which strongly reduces the σ - π mass difference. This occurrence indicates that nuclear matter partially restores the chiral symmetry. The $I = 0 \ \pi \pi$ interaction in nuclear matter is also studied in Ref. [4], which reflects the current theoretical understanding on this topic.

An additional source of reshaping of the σ spectral function at around threshold is yielded by standard many-body correlations; i.e., the *P*-wave coupling of pions to *particle-hole* and Δ -hole states [2,3,5]. The combined effect of partial restoration and collective P-wave pionic modes produces a conspicuous enhancement of the σ spectral function at around the $2m_{\pi}$ threshold [2,3]. This letter presents further analysis of experimental results on the $\pi \rightarrow \pi\pi$ process near the $2m_{\pi}$ threshold, which are then related to the direct observation of $\pi\pi$ in-medium correlations. In this regard, final pion pairs are studied in the vacuum and in the nuclear medium, and are further examined in the isospin 0 and 2 channels. The comparison of different isospin channels conveys additional information on the spectral changes of the σ -channel (I = 0) with respect to the non-resonant I = 2 channel. Finally, the data from the present measurements will directly probe the σ -spectral predictions around threshold and accordingly the underlying physics of chiral symmetry restoration.

The σ (or $f_0(600)$) meson is understood to be a broad resonant state $\Gamma_{\sigma} \sim m_{\sigma} \sim 500$ MeV which predominantly decays into two S-wave pions $\sigma \to \pi\pi$ [6]. The σ broad structure makes this meson difficult to directly observe via the $\pi N \to \pi\pi N$ elementary reaction [7], or heavy meson decays [8]. A systematic analysis of a broad sample of data involving pion pairs in the I = J = 0 channel however provides firm evidence of σ [9]. A clear signature of σ in the vacuum appears controversial. Conversely, the nuclear medium may condensate I = 0 pion pairs by changing the structure of the QCD vacuum; therefore, the study of σ by means of two coincident I = 0 pions via the $\pi \to \pi\pi$ process appears appropriate.

The σ spectral properties are studied by means of the $\pi\pi$ invariant mass and the composite observable $C_{\pi\pi}^A$, which is described in Section 3. In order to normalize this observable to pion production on the nucleon and explicitly consider the ratio for nuclei from ²H to ²⁰⁸Pb, a new analysis of our previously published [10] pion production data on the nucleon was completed as a function of the same kinematic quantities as were used for the nuclear data. $C_{\pi\pi}^A$ appears slightly different from the previously published one, which was normalized to deuterium [11]. In addition, new results for the composite observable are presented for Sc as a function of incident energy. The final pions have an energy distribution which is broadly centered between 20–50 MeV, depending on the energy of the projectile [11,12]. In this energy range, an ear-

Download English Version:

https://daneshyari.com/en/article/9850807

Download Persian Version:

https://daneshyari.com/article/9850807

Daneshyari.com