

Available online at www.sciencedirect.com

Nuclear Physics A 761 (2005) 162-172

The ⁸Li(*d*, *p*)⁹Li reaction and astrophysical ⁸B(*p*, γ)⁹C reaction rate

B. Guo, Z.H. Li^{*}, W.P. Liu, X.X. Bai, G. Lian, S.Q. Yan, B.X. Wang, S. Zeng, J. Su, Y. Lu

China Institute of Atomic Energy, P.O. Box 275(46), Beijing 102413, PR China Received 15 April 2005; received in revised form 16 June 2005; accepted 6 July 2005 Available online 8 August 2005

Abstract

Angular distribution of the ⁸Li(*d*, *p*)⁹Li_{g.s.} reaction at $E_{\rm Cm} = 7.8$ MeV was measured in inverse kinematics. The square of asymptotic normalization coefficient (ANC) for the virtual decay ⁹Li \rightarrow ⁸Li + *n* was derived to be 1.33 ± 0.33 fm⁻¹ through distorted wave Born approximation (DWBA) analysis, for the first time. According to charge symmetry, (ANC)² for ⁹C \rightarrow ⁸B + *p* was then extracted to be 1.14 ± 0.29 fm⁻¹. We have deduced the astrophysical S-factors and reaction rates for direct capture in ⁸B(*p*, γ)⁹C at energies of astrophysical relevance using the ANC for ⁹C \rightarrow ⁸B + *p* extracted from the mirror system.

© 2005 Elsevier B.V. All rights reserved.

PACS: 25.60.Je; 21.10.Jx; 25.40.Lw; 26.20.+f

Keywords: NUCLEAR REACTIONS ²H(⁸Li, ⁹Li), $E_{\rm Cm} = 7.8$ MeV; measured $\sigma(\theta)$, DWBA analysis; deduced asymptotic normalization coefficient; mirror systems; ⁸B(p, γ), E = low; deduced astrophysical S-factor

1. Introduction

Nucleosynthesis of light nuclei is impeded by the gap at mass number A = 8, where no stable nuclei exist. In some astrophysical environments, however, this gap

* Corresponding author.

0375-9474/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.nuclphysa.2005.07.013

E-mail address: zhli@iris.ciae.ac.cn (Z.H. Li).

can be bypassed via the reactions involving unstable nuclei ⁸B and ⁸Li, such as ${}^{8}B(p,\gamma){}^{9}C$, ${}^{8}Li(\alpha,n){}^{11}B$, ${}^{8}Li(n,\gamma){}^{9}Li$ and ${}^{8}Li(d,p){}^{9}Li$, to synthesize A > 8 nuclides. The ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}(p,\gamma){}^{9}\text{C}(\alpha,p){}^{12}\text{N}(p,\gamma){}^{13}\text{O}$ reaction chain is considered as one of the possible alternative paths to the 3α process for transforming the nuclei in the pp chains to the CNO nuclei in the peculiar astrophysical sites where the densities ($\ge 2 \times 10^7 \text{ g/cm}^3$) and temperatures ($T_9 \sim 0.1$ –0.4) are so high that the proton- and α -capture reactions become faster than the competing β -decays [1]. The ⁸B(p, γ)⁹C reaction may play an important role in the evolution of massive stars with very low metallicities [1,2], and thus has increasingly attracted both theoretical and experimental studies [1,3-8]. There are several microscopic and systematic calculations, and their results are in large discrepancy [1,3,4]. As for the experiments, it is very difficult to directly measure this reaction at energies of astrophysical relevance because of very small cross section and low intensity of the available ⁸B beam at present. Some indirect approaches have been applied to the study of this reaction [5–8]. Beaumel et al. [5] measured the ${}^{8}B(d, n){}^{9}C$ angular distribution in inverse kinematics with a 14.4 A MeV 8B beam, and then derived the ANC for the virtual decay ${}^{9}C \rightarrow {}^{8}B + p$ and the astrophysical $S_{18}(0)$ factor for the ${}^{8}B(p, \gamma){}^{9}C$ reaction. Trache et al. [6] analyzed the cross section data for one-proton-removal reaction of ${}^{9}C$ on four different targets (C, Al, Sn and Pb) [9], and employed the Glauber model [10] to deduce the ANC and $S_{18}(0)$ factor. Recently, Motobayashi [7] extracted the S_{18} factors in energy range 0.2–0.6 MeV by Coulomb dissociation approach $(S_{18}(0))$ factor can be then obtained through an extrapolation by the slope of theoretical S-factor curve). Most recently, Enders et al. [8] studied the proton-removal from ${}^{9}C$ on a carbon target at E = 78.3 A MeV and derived the ANC and astrophysical $S_{18}(0)$ factor. The $S_{18}(0)$ obtained from Ref. [7] is significantly larger than other three ones.

The ⁸Li(*d*, *p*)⁹Li reaction not only leads to the production of ⁹Be (via the ⁹Li β -decay) which acts as a precursor to heavier nuclides, but also can serve as a surrogate reaction to extract the ⁸B(*p*, γ)⁹C and ⁸Li(*n*, γ)⁹Li reaction rates for the direct capture. To date, only a few experiments for the ⁸Li(*d*, *p*)⁹Li reaction have been carried out by using the secondary ⁸Li beam. An earlier measurement, performed at $E_{\rm cm} = 1.5-2.8$ MeV [11], presented an upper limit of the cross section, though no ⁹Li event was detected. Very recently, the angular distributions for different states in ⁹Li were measured at $E(^{8}{\rm Li}) = 76$ MeV to obtain information on the spins, parities and single-neutron spectroscopic factors [12]. In the present work, we measured the ⁸Li(*d*, *p*)⁹Li_{g.s.} angular distribution at $E(^{8}{\rm Li}) = 39$ MeV through the coincidence detection of ⁹Li and recoil proton, and derived the ANC for the virtual decay ⁹Li \rightarrow ⁸Li + *n* based on DWBA analysis, and then deduced the ANC for ⁹C \rightarrow ⁸B + *p* based on charge symmetry. We have also calculated the direct capture S-factors and reaction rates for ⁸B(*p*, γ)⁹C at astrophysically relevant energies. Most recently, a short paper concerning the ⁸Li(*d*, *p*)⁹Li_{g.s.} reaction rates has been published elsewhere [13].

2. Experimental procedure and results

The measurement of ${}^{8}\text{Li}(d, p){}^{9}\text{Li}$ angular distribution was performed using the secondary beam facility GIRAFFE [14,15] built at the HI-13 tandem accelerator of China Download English Version:

https://daneshyari.com/en/article/9850851

Download Persian Version:

https://daneshyari.com/article/9850851

Daneshyari.com