

Available online at www.sciencedirect.com

Nuclear Physics A 754 (2005) 184c-188c

"Alpha-decays" of ${}^{10}_{\Lambda}$ Be and ${}^{10}_{\Lambda}$ B hypernuclei

L. Majling a,*,1, Yu.A. Batusov b, J. Lukstins b, A.N. Parfenov b

^a Nuclear Physics Institute, Academy of Sciences, Řež, Czech Republic ^b Joint Institute for Nuclear Research, Dubna, Russia

Received 21 January 2005; accepted 3 February 2005

Available online 10 March 2005

Abstract

The non-mesonic weak decays of Λ -hypernuclei and the explanation of the Γ^n/Γ^p ratio, in particular, are still one of the hot topics in hypernuclear physics. In the course of searching for a new strategy we continue the discussion of our suggestion presented at HYP00 to study non-mesonic weak decays of the two hypernuclei, $^{10}_{\Lambda} \text{Be}$ and $^{10}_{\Lambda} \text{B}$. © 2005 Elsevier B.V. All rights reserved.

1. Spectroscopy of ${}^{9}\text{Be} \rightarrow {}^{8}\text{Be} + n$

We have proposed [1] to use the unique feature of the ^9Be nucleus: after removing a neutron from its ground state several groups of α -particles appear from different excited states of the residual nucleus ^8Be . In Fig. 1, the relevant states of A=8 isotopes are displayed [2]. Due to their salient cluster structure— $\alpha\alpha N\Lambda$ —it may be possible to measure in the $^{10}_{\Lambda}\text{Be}$ and $^{10}_{\Lambda}\text{B}$ hypernuclei the partial "alpha-decay widths" $\Gamma^{\tau}_{\alpha\alpha i}$, corresponding to states of the residual nucleus $^8\text{Be*}(E_i;J_i^{\pi},T_i)$ which decays through $\alpha\alpha$ -channel. In such a way we can determine the one-nucleon stimulated process $\Lambda N \to nN$ unambiguously. Here, $\tau=N$ in Γ above. Obviously, the role of the two-nucleon stimulated process

^{*} Corresponding author.

E-mail address: majling@ujf.cas.cz (L. Majling).

¹ Supported in part by grant 202/02/0930 of the Grant Agency of the Czech Republic.

Fig. 1. Left panel: pattern of the ⁸Be spectra produced in the ⁹Be(p,d)⁸Be* reaction. Right panel: " $\alpha\alpha$ "-decay of $^{10}_{\Lambda}$ Be and $^{10}_{\Lambda}$ B hypernuclei and notation of $\Gamma^{\tau}_{\alpha\alpha i}$.

 $\Lambda np \to nnp$, could be seen by detection of the α -particles in the decay of the hypernucleus $^{11}_{\Lambda} B \to ^{8} Be + nnp$ ($\tau = np$ in Γ above).

The energy of the α -particles determines the final state of the residual nucleus ⁸Be, its quantum numbers, hence also the actual weight of the four possible wave functions of the $N\Lambda$ -pair: $p_{1/2}s_{\Lambda}$ with J=0,1 and $p_{3/2}s_{\Lambda}$ with J=1,2.

2. Relativistic hypernuclei

The partial widths $\Gamma^{\tau}_{\alpha\alpha i}$ can be determined through detection of tagged α -particles. Such tagged α -particles were recognized as 'hammer tracks' in the emulsion and were efficiently used for identification of ${}_{\Lambda}^{8}\text{Li}\ (\to \pi^{-8}\text{Be*})\ [3]$.

However, there is also another possibility: to explore the production of hypernuclei in relativistic heavy ion collisions. The complementarity of kinematics typical for the hypernuclear production by a meson beam (strangeness exchange reaction) and by a relativistic heavy ion beam is compared in Table 1.

The first experiments with relativistic hypernuclei were done many years ago by Bowen at Berkeley [4] and Khorozov at Dubna [5,6]. They demonstrated not only that such ex-

Table 1 Kinematics for hypernuclear production

				Secondaries		
Beam		Target		Slow		Fast
<u>K</u> -	+	^{A}Z	\rightarrow	${}^{A}_{\Lambda}Z$	+	π-
^{A}Z	+	p	\rightarrow	K^+	+	$\begin{bmatrix} A \\ A \end{bmatrix} + n$

Download English Version:

https://daneshyari.com/en/article/9851166

Download Persian Version:

https://daneshyari.com/article/9851166

<u>Daneshyari.com</u>