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We propose a real-time quantile-regression approach to analyze whether widely studied macroeconomic
and financial variables help to forecast out-of-sample gold returns. The real-time quantile-regression
approach accounts for model uncertainty, model instability, and the possibility that a forecaster has an
asymmetric loss function. Forecasts are computed and evaluated using the same asymmetric loss
function. When the loss function implies that an underestimation is somewhat more costly than an
overestimation of the same size, the forecasts computed using the real-time quantile-regression ap-
proach outperform forecasts implied by an autoregressive benchmark model.
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1. Introduction

Against the background of recent financial market turbulences,
research on the determinants of gold returns has mushroomed.
Among the determinants that researchers have studied are the
inflation rate (Beckmann and Czudaj, 2013a; Batten et al., 2014),
the oil price (Zhang and Wei, 2010; Reboredo, 2013b), the ex-
change rate (Pukthuanthong and Roll, 2011; Reboredo, 2013b), and
business-cycle fluctuations (Pierdzioch et al., 2014b). Studying
whether the various determinants studied in earlier literature help
to forecast gold returns is important because the properties of gold
as a safe-haven investment, a low-correlation portfolio diversifier,
and a hedge against fluctuating currency values have received
much attention in recent research (Hillier et al., 2006; Joy, 2011;
Ciner et al., 2013, to name just a few).

Despite many research efforts, no consensus has emerged re-
garding the core determinants of gold returns. As a result, re-
searchers have studied gold returns by applying flexible forecast-
ing approaches that account for model uncertainty and model
instability (see also Vrugt et al., 2007; Aye et al., 2015; Baur et al.,
2014; Pierdzioch et al., 2014a, 2014b, 2015). Model uncertainty
arises because gold returns may be linked to a potentially large
number of determinants, none of which can be excluded a priori
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on economic grounds. Model instability arises because the relative
importance of these determinants most likely has changed over
time (Baur, 2011; Batten et al., 2014) and may be state dependent
(Wang and Lee, 2011; Wang et al., 2011).

We contribute to earlier literature in that we propose a real-
time quantile-regression approach to forecast gold returns. A
quantile-regression approach renders it possible to compute
forecasts that target the conditional quantiles rather than the
conditional mean of the distribution of gold returns. Quantile re-
gressions have received growing attention in the recent finance
literature (Basset and Chen, 2001; Engle and Manganelli, 2004;
Chuang et al., 2009; Baur et al., 2012) and have been studied re-
cently in a forecasting context by Meligkotsidou et al. (2014),
Manzan (2015), and Pedersen (2015). Quantile regressions also
have been applied to study gold returns. Ma and Patterson (2013)
apply quantile regressions to study the links between the gold
price and its macroeconomic and financial determinants. Mensi
et al. (2014) use quantile regressions to study how emerging-
market stock-market returns depend on gold returns and other
macroeconomic and financial factors. Dee et al. (2013) use quantile
regressions to explore the link between gold returns, stock-market
movements and inflation, and Zagaglia and Marzo (2013) use
quantile regressions to study the link between gold returns and
exchange-rate movements. Jeong et al. (2012) develop a test for
Granger causality in conditional quantiles and apply their test to
study the causal links between gold returns, oil-price returns, and
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exchange-rate movements. Baur (2013) uses quantile regressions
to study the link between gold excess returns and the excess re-
turns on a commodity index. Ciner (2015) shows that the quantile
regressions render it possible to recover links between, on one
hand, CAPM betas and returns of stocks of precious metal mining
firms and, on the other hand, trading volume.

Forecasting the conditional quantiles of the distribution of gold
returns is a natural forecasting strategy if a forecaster has an
asymmetric loss function (for an illustration, see Koenker and
Hallock, 2001, p. 146). An asymmetric loss function easily arises in
a risk-management context, or simply because of behavioral biases
or strategic behavior of forecasters (Laster et al., 1999; Pierdzioch
et al,, 2013). In recent research on the determinants of gold re-
turns, Pierdzioch et al. (2014b) use asymmetric loss functions to
measure the accuracy of out-of-sample forecasts of gold returns.
Building on research by Campbell and Thompson (2008), they
evaluate forecasts using an out-of-sample R? statistic that can be
computed under a symmetric and an asymmetric loss function.
The computation of forecasts, however, uses the real-time fore-
casting approach developed by Pesaran and Timmermann (1995,
2000). This approach accounts for model uncertainty and model
instability but rests on the assumption that a forecaster has a
symmetric loss function because forecasting regressions are esti-
mated by the ordinary-least-squares technique. Hence, in case a
forecaster has an asymmetric loss function, the problem arises that
the loss function used to compute forecasts differs from the loss
function used to evaluate forecasts. The real-time quantile-re-
gression approach that we study in this research overcomes this
problem because, as Koenker and Machado (1999) have shown,
the potentially asymmetric loss function used for forecast com-
putation can also be used for forecast evaluation. The real-time
quantile-regression approach, thus, is an integrated approach to
forecasting and evaluating gold returns under asymmetric loss.

We organize the remainder of this research as follows. In Sec-
tion 2, we outline the real-time quantile-regression approach and
we describe how we evaluate forecasts under an asymmetric loss
function. In Section 3, we describe our data and we lay out our
empirical results. In Section 4, we conclude.

2. The real-time quantile-regression approach

We assume that a forecaster considers n macroeconomic and
financial variables, xj., j = 1, ..., n, as potential predictors for gold
returns, fi41, in period of time t+ 1. The forecasting model is of the
general  format 41 = Po + PiX1,c + -PuXne + U1,  Where
Uy = disturbance term and g;,j=0,1,2,...,n are regression
coefficients to be estimated.

A key problem is that a forecasting model that features all
predictor variables is not necessarily the best forecasting model. In
principle, a forecaster can choose, in every period of time, t, among
the competing forecasting models that feature alternative combi-
nations of the predictor variables (Pesaran and Timmermann,
1995, 2000). Accordingly, we account for model uncertainty by
estimating in every period of time, t, all possible combinations of
forecasting models, given the n predictor variables.

We use a quantile-regression approach (Koenker and Basset,
1978, for a textbook exposition, see Koenker, 2005) to estimate the
forecasting models and, thereby, take into account that a fore-
caster may have an asymmetric loss function. The following per-
iod-loss function forms the foundation of the quantile-regression
approach

L(a, ﬁjt-%—l,m,a) = ﬁt+1,m,a(a - 1(ﬁt+l,m,a < 0)), M

where 1(-) = indicator function, and ﬁt_m,a = forecast error for

model m in period of time t, given the quantile parameter,
a € (0, 1). The forecast error is defined as actual returns minus the
forecast. If a=0.5, the loss function is symmetric in the absolute
forecast error, while for « < 0.5 (a > 0.5) the loss of a negative
(positive) forecast error exceeds the loss of a positive (negative)
forecast error. In the symmetric case with @=0.5, a forecaster
should target the median of the distribution of gold returns. If the
quantile parameter assumes a value a < 0.5 (a > 0.5), a forecaster
should target the a-quantile of the distribution of gold returns,
requiring a downward (upward) adjustment of forecasts to make
positive (negative) forecast errors more likely than in the case of
a=0.5.

Given a quantile parameter, &, we sum up over the period-loss
functions to compute the total loss and choose, for every model, m,
the parameters, 4, to minimize

t
L@, m ty=min Y L@ j;1ma)
fa j=on (@)

where t denotes the latest period of time for which data that can
be used to forecast gold returns are available, and ih j+1,ma 1S iN-
terpreted as the in-sample forecast error. The notation g, em-
phasizes that the parameters of the forecasting models can differ
across quantiles.

In every period of time, t, we select an optimal forecasting
model by comparing the m estimated models with a benchmark
model, b. To this end, we compute min Cyme, With

Camt = noL(@ m, )] L0, ), where y,, = (- D/t - lyma) De-
nalizes model complexity, I m,. = length of the vector of regression
parameters (neglecting the constant) for model m given the
quantile parameter, @, and £P = loss under a benchmark model
(autoregressive model of order one). In addition, we study various
forecast-averaging schemes. Specifically, we compute the mean
and the median of the out-of-sample forecasts implied by the m
estimated models, and we compute a weighted out-of-sample
forecast using, for simplicity, 1/c,m, as weights (weights are scaled
to sum up to unity across models; for other averaging schemes, see
Meligkotsidou et al., 2014).

A quantile regression captures potential shifts in the links be-
tween gold returns and its macroeconomic and financial de-
terminants across the distribution of gold returns. However, the
links between gold returns and its determinants may also change
over time due to, for example, financial crises and structural
breaks. We account for the resulting model instability by recur-
sively reestimating all possible combinations of forecasting models
in every period of time, t, as new data become available. Nicolau
and Palomba (2015) argue that using a recursive rather than a
rolling-window estimation approach has the advantages that
there is no need to specify the length of the rolling window and
the information used for estimation is maximized since no ob-
servations are dropped to fix the length of the rolling window.

For forecast evaluation, we use the out-of-sample R? statistic
studied in the context of forecasting gold returns by Pierdzioch
et al. (2014b). Their out-of-sample R? statistic is similar to the
goodness-of-fit criterion for quantile regressions proposed by
Koenker and Machado (1999), and it extends the out-of-sample R?
statistic analyzed by Campbell and Thompson (2008) to the case of
an asymmetric loss function. For our quantile-regression approach,
the out-of-sample R? statistic is given by R2(a, b) = 1 — L(a)/ L (),
where £(a) = sum of the out-of-sample losses, and £?(a) = sum of
the out-of-sample losses for a benchmark model. Hence, the loss
function used for forecast evaluation is identical to the loss func-
tion used for forecast computation. Given an a-quantile, the cu-
mulated loss, £(a), is computed as the sum of losses implied by
the one-period-ahead forecast errors obtained either from a
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