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Abstract

In this Letter, we illustrate how the two-dimensional theory of elasticity provides a physical example of field theory displaying
scale but not conformal invariance.
 2005 Elsevier B.V. All rights reserved.

PACS: 11.10.Kk; 11.25.Hf; 62.20.Dc

Keywords: Scale and conformal invariance in QFT; Theory of elasticity

1. Introduction

In the quantum field theory literature, scale in-
variance is often assumed to imply conformal invari-
ance, provided the theory is local. Furthermore, both
invariances are usually considered equivalent to the
tracelessness of the stress–energy tensor. These widely
held convictions, sustained by the difficulty of finding
counterexamples, are actually incorrect.

Coleman and Jackiw[1] clarified this issue in the
case of four space–time dimensions, showing that con-
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formal invariance is not in general guaranteed by the
presence of scale invariance. A systematic analysis
of the problem for arbitrary dimensionalityD was
then performed by Polchinski[2], who achieved the
same conclusion for anyD �= 2. In the particular case
D = 2, however, Polchinski proved that scale invari-
ance implies conformal invariance under broad condi-
tions. In the following, we will focus on this interest-
ing dimensionality, providing a physical example in
which the implication does not hold.

Let us now summarize the observations presented
in Ref. [2]. Given a symmetric and conserved stress–
energy tensorTµν(x), the property of scale invari-
ance can be equivalently formulated in terms of its
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trace as

(1)Tµ
µ(x) = −∂µKµ(x),

whereKµ(x) is some local operator. Conformal in-
variance further requires the existence of another local
operatorL(x) such that

(2)Kµ(x) = −∂µL(x) ⇒ Tµ
µ(x) = ∂µ∂µL(x).

The above property is then equivalent to the trace-
lessness of the stress–energy tensor, because one can
define the ‘improved’ tensor

(3)Θµν(x) = Tµν(x) + ∂µ∂νL(x) − gµν∂ρ∂ρL(x),

which is both conserved and traceless. As properly
emphasized in Ref.[2], most of the physically rel-
evant theories display both scale and conformal in-
variance because they do not have any non-trivial
candidate forKµ. We will see in the following how
this is the crucial ingredient in our counterexam-
ple.

Besides these general remarks, Polchinski also re-
fined an argument by Zamolodchikov[3], demonstrat-
ing that scale invariance implies conformal invariance
in D = 2. The proof consists of defining another kind
of ‘improved’ stress–energy tensorΘ ′

µν(x), whose
trace is shown to have a vanishing two-point function:

(4)
〈
Θ ′

µ
µ(x)Θ ′

σ
σ (0)

〉 = 0.

The sufficient condition for constructingΘ ′
µν(x) is a

discrete spectrum of scaling dimensions, and, together
with the assumption of reflection positivity,(4) implies
the vanishing of the traceΘ ′

µ
µ itself. Actually, un-

der the above hypotheses the two ‘improved’ tensors
Θµν(x) andΘ ′

µν(x) coincide.

2. The model

Let us now introduce a physical example in which
scale invariance does not imply conformal invariance.
This is the theory of elasticity[4] in two dimensions,
defined by the Euclidean action

S =
∫

d2xL

(5)= 1

2

∫
d2x

{
2guµνu

µν + k
(
uσ

σ
)2}

,

whereuµν = 1
2(∂µuν + ∂νuµ) is the so-called strain

tensor, built with the ‘displacement fields’uµ. Greek
indices run over 1,2 and we use the summation con-
vention. The coefficientsg andk+g represent, respec-
tively, the shear modulus and the bulk modulus of the
described material.

The action(5) is invariant under translations, rota-
tions and dilatations, provided the fieldsuµ transform
under rotationsx′µ = Λµ

νx
ν as vectors

(6)u′
µ(x′) = Λµ

νuν(x),

while no change is required for fields under dilatations.
The canonical stress–energy tensor

(7)T c
µν = ∂L

∂(∂µuσ )
∂νuσ − gµνL

associated to(5) is traceless but not symmetric. How-
ever, a symmetric and conserved tensorTµν can be
conventionally constructed via the Belinfante pre-
scription:

(8)Tµν = T c
µν + ∂ρBρµν,

where

Bρµν = i

2

{
∂L

∂(∂ρuσ )
Sνµuσ + ∂L

∂(∂µuσ )
Sρνuσ

(9)+ ∂L
∂(∂νuσ )

Sρµuσ

}
= −Bµρν.

Sµν is an antisymmetric tensor, taking values in the
representations of the Lorentz group, which expresses
the variation of the field multipletφ = {uµ} under in-
finitesimal rotationsx′µ � xµ + ω

µ
ν xν :

(10)φ′(x′) �
(

I − i

2
ωρνS

ρν

)
φ(x).

In our case the fields transform according to the vector
representation(6), and the only non-vanishing Euclid-
ean components ofSµν act as

S12u1 = −S21u1 = iu2,

S12u2 = −S21u2 = −iu1.

It follows from (8) that the trace of the stress–
energy tensor can be cast in the form(1)

(11)Tµ
µ = −∂µKµ with Kµ = −Bµρ

ρ,

in agreement with the scale invariance of the theory.
In order to investigate whether the additional prop-
erty (2), equivalent to conformal invariance, is also
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