Azimuthal asymmetry in unpolarized πN Drell-Yan process

Zhun Lu ${ }^{\text {a }}$, Bo-Qiang Ma ${ }^{\text {ba, }}$
${ }^{\text {a }}$ Department of Physics, Peking University, Beijing 100871, China
${ }^{\mathrm{b}}$ CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
c DiSTA, Università del Piemonte Orientale "A. Avogadro" and INFN, Gruppo Collegato di Alessandria, 15100 Alessandria, Italy

Received 2 January 2005; received in revised form 3 April 2005; accepted 3 April 2005
Available online 13 April 2005
Editor: H. Georgi

Abstract

Taking into account the effect of final-state interaction, we calculate the non-zero (naïve) T-odd transverse momentum dependent distribution $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$ of the pion in a quark-spectator-antiquark model with effective pion-quark-antiquark coupling as a dipole form factor. Using the model result we estimate the $\cos 2 \phi$ asymmetries in the unpolarized $\pi^{-} N$ Drell-Yan process which can be expressed as $h_{1}^{\perp} \times \bar{h}_{1}^{\perp}$. We find that the resulting $h_{1 \pi}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$ has the advantage to reproduce the asymmetry that agrees with the experimental data measured by NA10 Collaboration. We estimate the $\cos 2 \phi$ asymmetries averaged over the kinematics of NA10 experiments for 140,194 and $286 \mathrm{GeV} \pi^{-}$beam and compare them with relevant experimental data. © 2005 Elsevier B.V. All rights reserved.

PACS: 12.38.Bx; 13.85.-t; 13.85.Qk; 14.40.Aq
Keywords: T-odd distribution function; Final-/initial-state interaction; Unpolarized Drell-Yan process; Azimuthal asymmetry

1. Introduction

Recently it is demonstrated that the effect of final-state interaction (FSI) or initial-state interaction (ISI) can lead to significant azimuthal asymmetries in various high energy scattering processes involving hadrons [1,2]. Among these asymmetries, single spin asymmetry (SSA) in semi-inclusive deeply inelastic scattering (SIDIS) [1] and that in Drell-Yan

[^0]processes [2] from FSI/ISI via the exchange of a gluon, have been explored and are recognized as previously known Sivers effect [3,4]. This effect, formerly thought to be forbidden by the time-reversal property of QCD [5], can be survived from time-reversal invariance due to the presence of the path-ordered exponential (Wilson line) in the gauge-invariant definition of the transverse momentum dependent parton distributions [6-8]. Along this direction some phenomenological studies [9-11] have been carried out on transverse single-spin asymmetries in SIDIS process, which is under investigation by current ex-
periment [12]. Analogously the exchange of a gluon can also lead to another leading twist (naive) T-odd distribution $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$: the covariant transversely polarization density of quarks inside an unpolarized hadron. This chiral-odd partner of Sivers effect function, introduced first in Ref. [13] and is referred to as Boer-Mulders function, has been proposed [14] to account for the large $\cos 2 \phi$ asymmetries in the unpolarized pion-nucleon Drell-Yan process that were measured more than 10 years ago [15,16]. Recently $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$ of the proton has been computed in a quarkscalar diquark model $[9,17]$ and also used to analyze the consequent $\cos 2 \phi$ azimuthal asymmetries in both unpolarized ep SIDIS process [9] and unpolarized $p \bar{p}$ Drell-Yan process [17], respectively.

The same mechanism producing T-odd distribution functions can be applied to other hadrons such as mesons. In a previous paper [18] we reported that nonzero h_{1}^{\perp} of the quark inside the pion (denoted as $h_{1 \pi}^{\perp}$) can also arise from final-state interaction, by applying a simple quark spectator-antiquark model. Among the phenomenological implications of the function $h_{1 \pi}^{\perp}$ is an important result for the $\cos 2 \phi$ azimuthal asymmetry in the unpolarized $\pi^{-} N$ Drell-Yan process [15,16], which can be produced by the product of h_{1}^{\perp} of the pion and that of the nucleon. Therefore, one can investigate how the theoretical prediction of the asymmetry is comparable with the experimental result, as a test of the theory and the model. In the present Letter, based on $h_{1 \pi}^{\perp}$ from our model calculation, we analyze the $\cos 2 \phi$ azimuthal asymmetry in the unpolarized $\pi^{-} N$ Drell-Yan process by considering the kinematical region of NA10 experiments [15]. To obtain the right Q_{T} dependence of the asymmetry, we recalculate $h_{1 \pi}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$ in a spectator model similar to the model used in Ref. [18]. The difference is that here we treat the effective pion-quarkantiquark coupling g_{π} as a dipole form factor $g_{\pi}\left(k^{2}\right)$, in contrary to the treatment in Ref. [18] where we take g_{π} as a constant. We find that $h_{1 \pi}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$ resulting from the new treatment together with $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$ for the nucleon in a similar treatment [10] can reproduce the $\cos 2 \phi$ asymmetry which agrees with NA10 data. We give the asymmetries predicted by our model averaged over the kinematics of NA10 experiments for 140,194 and $286 \mathrm{GeV} \pi^{-}$beam and find that the energy dependence of these asymmetries is not strong.

2. Non-zero $h_{1 \pi}^{\perp}$ of the pion in spectator model

In this section, we will show how to calculate $h_{1 \pi}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$ in a quark-spectator antiquark model. We follow Ref. [1] to work in Abelian case at first and then generalize the result to QCD. There are pion-quarkantiquark interaction and gluon-spectator antiquark interaction in the model:
$\mathcal{L}_{I}=-g_{\pi} \bar{\psi} \gamma_{5} \psi \varphi_{\pi}-e_{2} \bar{\psi} \gamma^{\mu} \psi A_{\mu}+$ h.c.,
in which g_{π} is the pion-quark-antiquark effective coupling, and e_{2} is the charge of the antiquark. When the intrinsic transverse momentum of the quark is taken into account, as required by T-odd distributions, the quark correlation function of the pion in Feynman gauge (we perform calculation in this gauge) is [7,8]:

$$
\begin{align*}
& \Phi_{\alpha \beta}\left(x, \mathbf{k}_{\perp}\right) \\
& =\int \frac{d \xi^{-} d^{2} \xi_{\perp}}{(2 \pi)^{3}} e^{i k \cdot \xi}\left\langle P_{\pi}\right| \bar{\psi}_{\beta}(0) \mathcal{L}_{0}\left(0^{-}, \infty^{-}\right) \\
& \quad \times\left.\mathcal{L}_{\xi}^{\dagger}\left(\xi^{-}, \infty^{-}\right) \psi_{\alpha}(\xi)\left|P_{\pi}\right\rangle\right|_{\xi^{+}=0} \tag{2}
\end{align*}
$$

where $\mathcal{L}_{a}\left(a^{-}, \infty^{-}\right)$is the path-ordered exponential (Wilson line) accompanied with the quark field which has the form
$\mathcal{L}_{0}(0, \infty)=\mathcal{P} \exp \left(-i g \int_{0^{-}}^{\infty^{-}} A^{+}\left(0, \xi^{-}, \mathbf{0}_{\perp}\right) d \xi^{-}\right)$,
etc. The Wilson line has the importance to make the definition of the distribution/correlation function gauge-invariant. Without the constraint of timereversal invariance, in leading twist the quark correlation function of the pion can be parameterized into a set of leading twist transverse momentum dependent distribution functions as follows [13,19]

$$
\begin{align*}
& \Phi\left(x, \mathbf{k}_{\perp}\right) \\
& \quad=\frac{1}{2}\left[f_{1 \pi}\left(x, \mathbf{k}_{\perp}^{2}\right) \nprec+h_{1 \pi}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\sigma_{\mu \nu} \mathbf{k}_{\perp}^{\mu} n^{\nu}}{M_{\pi}}\right] \tag{4}
\end{align*}
$$

where n is the light-like vector with components $\left(n^{+}, n^{-}, \mathbf{n}_{\perp}\right)=\left(1,0, \mathbf{0}_{\perp}\right), \sigma_{\mu \nu}=\frac{i}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right]$ and M_{π} is the pion mass. Knowing $\Phi_{\pi}\left(x, \mathbf{k}_{\perp}\right)$, one can obtain these distributions from equations
$f_{1 \pi}\left(x, \mathbf{k}_{\perp}^{2}\right)=\operatorname{Tr}\left[\Phi\left(x, \mathbf{k}_{\perp}\right) \gamma^{+}\right]$,
$\frac{2 h_{1 \pi}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right) \mathbf{k}_{\perp}^{i}}{M_{\pi}}=\operatorname{Tr}\left[\Phi\left(x, \mathbf{k}_{\perp}\right) \sigma^{i+}\right]$.

https://daneshyari.com/en/article/9861257

Download Persian Version:
https://daneshyari.com/article/9861257

Daneshyari.com

[^0]: E-mail address: mabq@phy.pku.edu.cn (B.-Q. Ma).

