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Abstract

We study the Lagrangian for a sigma model based on the non-compact Heisenberg group. A unique feature of this model—
unlike the case for compact Lie groups—is that the Lagrangian has to be regulated since the trace over the Heisenberg group is
otherwise divergent. The resulting theory is a real Lagrangian with a quartic interaction term. In particular, inD = 2 space–time
dimensions, after a few non-trivial transformations, the Lagrangian is shown to be equivalent, at the classical level, to a complex
cubic Lagrangian. A one-loop computation confirms that the quartic and cubic Lagrangians are equivalent at the quantum level
as well.

The complex Lagrangian is known to be classically equivalent to theSU(2) sigma model, with the equivalence breaking
down at the quantum level. An explanation of this well-known results emerges from the properties of the Heisenberg sigma
model.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Sigma models in two-dimensional space–time have
a long history in theoretical physics[1]. They are ubiq-
uitous in particle physics, with many applications and
extensions in quantum field theory and string theory.
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These sigma models are usually based on compact Lie
groups.

In this Letter, we construct a sigma model based on
the non-compact Heisenberg group. The present study
is motivated by the more complex case studied in[2]
which deals with a supersymmetric Yang–Mills theory
having a local infinite-dimensional Kac–Moody group
as its gauge group. The need for regulating the La-
grangian of the theory was essential in obtaining local
Kac–Moody gauge symmetry. The Heisenberg alge-
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bra is an infinite-dimensional non-compact subalgebra
of the well-known Kac–Moody algebra[3], and the
Heisenberg sigma model is the simplest theory hav-
ing the new features that emerge from constructing
quantum field theories based on infinite-dimensional
Lie algebras. Coupled to the fact that there is a central
extension associated with the Heisenberg algebra, the
sigma model obtained here will be different from the
sigma model based on a compact Lie group. This is the
main motivation for studying the Lagrangian obtained
in this Letter.

Given that the group element of the Heisenberg
group is infinite-dimensional, the usual procedure of
obtaining a Lagrangian by tracing over a representa-
tion of the group yields a divergent result. We regulate
the trace to obtain a finite Lagrangian, which turns out
to be a real quartic LagrangianL4. Since no restriction
was imposed in obtaining the Lagrangian, the result is
valid for arbitrary space–time dimensionsD.

Furthermore, one can show that in two dimen-
sions, after some straightforward calculations involv-
ing functional integrals, the quartic Lagrangian is
equivalent to a complex cubic LagrangianL3. Interest-
ingly enough, the relationship of the two Lagrangians
is not that of a usual duality transformation since the
mapping does not induce an inversion of the coupling
constant. The cubic LagrangianL3 in turn is known
to beclassically equivalent to the sigma model based
on theSU(2) group[4] which has spontaneous parti-
cle production[5]. Furthermore, it is also known that
this equivalence breaks down on quantizing the two
theories[5]. The causes of this breakdown was ex-
pounded in[6,7] and explored in[8,9]. Since we are
dealing with a model based on an infinite-dimensional
Lie group, our work should provide an understanding
of the quantum inequivalence from a different perspec-
tive.

It is well known that a pair of quantum theories are
equivalent if the corresponding correlation functions
of both theories are equal. Since our cubic Lagrangian
is obtained from that of the quartic Lagrangian by per-
forming an exact Gaussian integration and by constant
field rescalings which do not affect the path integral
measure, the quantum theory of the two Lagrangians
are equivalent.

To verify the quantum equivalence of the cubic and
quartic theories, we compute the one-loop beta func-
tion for the two theories. We employ the background

field method to study the renormalizability of the the-
ory up to the one-loop correction. A similar, but much
more complex, calculation was carried out in[10]
to study the renormalizability of aU(1) gauge field
with Kac–Moody gauge symmetry. We calculate the
β-functions for both the quartic and cubic Lagrangian
realizations of the theory, and show that to one-loop
they are identical. In so doing we also verify the one-
loop renormalizability of two (apparently dissimilar)
bosonic theories.

2. The Heisenberg sigma model Lagrangian

Consider the (non-compact) Heisenberg algebra
[x,p] = ik, wherek is the central extension. In terms
of the creation and destruction operators, it is given by
[a, a†] = k. Since we would like to construct a sigma
model based on the Heisenberg group, thus let us start
from the finite group elements of the Heisenberg alge-
bra. By the usual exponential mapping, we can write
such an element as

(1)Ω = exp
[
iφ + iωa + iω∗a†].

Note that the field (group coordinate)φ is a real vari-
able, whereas the fieldω is a complex variable. The
field φ has to be introduced due to the existence of the
central extension of the Heisenberg algebra.

The simplest non-linear sigma model Lagrangian
based on a space–time dependence of the group coor-
dinatesφ andω is defined by

(2)L= Tr
[
∂µΩ†∂µΩ

]
.

However, this approach fails since the trace over
the non-compact operatorsa, a† diverges, yielding
L= ∞. A similar situation was encountered in defin-
ing the supersymmetric gauge fields with the infinite-
dimensional Kac–Moody symmetry[2].

To successfully obtain a finite Lagrangian, one
must regularize the trace Tr[· · ·] over the infinite-
dimensional operators. There is a wide variety of reg-
ulators which one can choose, and we expect from the
principle of universality that a whole range of regu-
lators would lead to the same renormalizable theory
[2].1 We make the natural choice for the regulator of

1 Note that another approach of regularizing this Lagrangian may
be developed from the works of Wigner and Moyal[12].
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