

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 611 (2005) 87-92

www.elsevier.com/locate/physletb

Chiral perturbation theory for pentaquark baryons and its applications

P. Ko^a, Jungil Lee^b, Taekoon Lee^c, Jae-Hyeon Park^a

^a Department of Physics, KAIST, Daejon 305-701, South Korea
 ^b Department of Physics, Korea University, Seoul 136-701, South Korea
 ^c Department of Physics, Seoul National University, Seoul 151-742, South Korea

Received 13 December 2004; accepted 14 February 2005

Editor: G.F. Giudice

Abstract

We construct a chiral Lagrangian for pentaquark baryons assuming that the recently found $\Theta^+(1540)$ state belongs to an antidecuplet of SU(3) flavor symmetry with $J^P = \frac{1}{2}^{\pm}$. We derive the Gell-Mann–Okubo formulae for the antidecuplet baryon masses, and a possible mixing between the antidecuplet and the pentaquark octet. Then we calculate the cross sections for $\pi^- p \to K^- \Theta^+$ and $\gamma n \to K^- \Theta^+$ using our chiral Lagrangian. The resulting amplitudes respect the underlying chiral symmetry of QCD correctly. We also describe how to include the light vector mesons in the chiral Lagrangian. \otimes 2005 Elsevier B.V. All rights reserved.

PACS: 12.39.Fe; 14.20.-c; 13.75.-n; 13.60.-r

1. Introduction

Recently, five independent experiments reported observations of a new baryonic state $\Theta^+(1540)$ with a very narrow width < 5 MeV [1–6], which is likely to be a pentaquark state (*uudds*) [7]. Arguments based on quark models suggest that this state is a mem-

ber of SU(3) antidecuplet with spin $J = \frac{1}{2}$ or $\frac{3}{2}$. The hadro/photo-production cross section would depend on the spin J and parity P of the Θ^+ , and it is important to have reliable predictions for these cross sections. The most proper way to address these issues will be chiral perturbation theory.

In this Letter, we construct a chiral Lagrangian for pentaquark baryons assuming they are SU(3) antidecuplet with $J = \frac{1}{2}$ and P = +1 or -1. (The case for $J = \frac{3}{2}$ can be discussed in a similar manner, except that antidecuplets are described by Rarita–Schwinger fields.) Then we calculate the mass spectra of antide-

E-mail addresses: pko@muon.kaist.ac.kr (P. Ko), jungil@hep.anl.gov (J. Lee), tlee@phya.snu.ac.kr (T. Lee), jhpark@muon.kaist.ac.kr (J.-H. Park).

 $^{0370\}mathchar`2693\mathchar`$ see front matter <math display="inline">@$ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.physletb.2005.02.031

cuplets, their possible mixings with pentaquark octets, the decay rates of antidecuplets, and cross sections for $\pi^- p \rightarrow K^- \Theta^+$ and $\gamma n \rightarrow K^- \Theta^+$. Finally we describe how to include light vector mesons in our framework, and how the low energy theorem is recovered in the soft pion limit.

2. Chiral Lagrangian for a pentaquark baryon decuplet

Let us denote the Goldstone boson field by pion octet π , baryon octet including nucleons by B, and antidecuplet including Θ^+ by \mathcal{P} . Under chiral SU(3)_L × SU(3)_R [8], the Goldstone boson field $\Sigma \equiv \exp(2i\pi/f)$, where $f \approx 93$ MeV is the pion decay constant, transforms as

 $\Sigma(x) \to L\Sigma(x)R^{\dagger}.$

It is convenient to define another field $\xi(x)$ by $\Sigma(x) \equiv \xi^2(x)$, which transforms as

$$\xi(x) \rightarrow L\xi(x)U^{\dagger}(x) = U(x)\xi(x)R^{\dagger}$$

The 3×3 matrix field U(x) depends on Goldstone fields $\pi(x)$ as well as the SU(3) transformation matrices *L* and *R*. It is convenient to define two vector fields with following properties under chiral transformations:

$$\begin{aligned} V_{\mu} &= \frac{1}{2} \left(\xi^{\dagger} \partial_{\mu} \xi + \xi \partial_{\mu} \xi^{\dagger} \right), \\ V_{\mu} &\to U V_{\mu} U^{\dagger} + U \partial_{\mu} U^{\dagger}, \\ A_{\mu} &= \frac{i}{2} \left(\xi^{\dagger} \partial_{\mu} \xi - \xi \partial_{\mu} \xi^{\dagger} \right), \\ A_{\mu} &\to U A_{\mu} U^{\dagger}. \end{aligned}$$
(1)

Note that V_{μ} transforms like a gauge field. The transformation of the baryon octet and pentaquark antidecuplet \mathcal{P} including Θ^+ (I = 0) can be chosen as

$$B^{i}{}_{j} \rightarrow U^{i}{}_{a}B^{a}{}_{b}U^{\dagger}{}^{b}{}_{j},$$

$$\mathcal{P}_{ijk} \rightarrow P_{abc}U^{\dagger}{}^{a}{}_{i}U^{\dagger}{}^{b}{}_{j}U^{\dagger}{}^{c}{}_{k},$$

where all the indices are for SU(3) flavor. The pentaquark baryons are related to $\mathcal{P}_{abc} = \mathcal{P}_{(abc)}$ by, for example, $\mathcal{P}_{333} = \Theta^+$, $\mathcal{P}_{133} = \frac{1}{\sqrt{3}}\tilde{N}^0$, $\mathcal{P}_{113} = \frac{1}{\sqrt{3}}\tilde{\Sigma}^-$, and $\mathcal{P}_{112} = \frac{1}{\sqrt{3}}\Xi_{3/2}^-$. Then, one can define a covariant derivative \mathcal{D}_{μ} , which transforms as

$$\mathcal{D}_{\mu}B \to U\mathcal{D}_{\mu}BU^{\dagger}, \text{ by}$$

 $\mathcal{D}_{\mu}B = \partial_{\mu}B + [V_{\mu}, B].$

Chiral symmetry is explicitly broken by nonvanishing current-quark masses and electromagnetic interactions. The former can be included by regarding the quark-mass matrix $m = \text{diag}(m_u, m_d, m_s)$ as a spurion with transformation property $m \rightarrow LmR^{\dagger} =$ RmL^{\dagger} . It is more convenient to use $\xi m \xi + \xi^{\dagger} m \xi^{\dagger}$, which transforms as an SU(3) octet. Electromagnetic interactions can be included by introducing photon field \mathcal{A}_{μ} and its field strength tensor $F_{\mu\nu} = \partial_{\mu}\mathcal{A}_{\nu} \partial_{\nu}\mathcal{A}_{\mu}$:

$$\partial_{\mu}\Sigma \to \mathcal{D}_{\mu}\Sigma \equiv \partial_{\mu}\Sigma + ie\mathcal{A}_{\mu}[Q,\Sigma],$$
 (2a)

$$V_{\mu} \to V_{\mu} + \frac{ie}{2} \mathcal{A}_{\mu} \left(\xi^{\dagger} Q \xi + \xi Q \xi^{\dagger} \right), \tag{2b}$$

$$A_{\mu} \to A_{\mu} - \frac{e}{2} \mathcal{A}_{\mu} \left(\xi^{\dagger} Q \xi - \xi Q \xi^{\dagger} \right), \qquad (2c)$$

where $Q \equiv \text{diag}(2/3, -1/3, -1/3)$ is the electriccharge matrix for light quarks (q = u, d, s).

Now it is straightforward to construct a chiral Lagrangian with lowest order in derivative expansion. The parity and charge-conjugation symmetric chiral Lagrangian is given by

$$\mathcal{L} = \mathcal{L}_{\Sigma} + \mathcal{L}_{B} + \mathcal{L}_{\mathcal{P}},\tag{3}$$

where

$$\mathcal{L}_{\Sigma} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left[\mathcal{D}_{\mu} \Sigma^{\dagger} \mathcal{D}^{\mu} \Sigma - 2\mu m \left(\Sigma + \Sigma^{\dagger} \right) \right], \quad (4a)$$
$$\mathcal{L}_{B} = \operatorname{Tr} \bar{B} (i \not\!\!D - m_{B}) B + D \operatorname{Tr} \bar{B} \gamma_{5} \{ A, B \}$$

$$+ F \operatorname{Tr} \bar{B} \gamma_5[\mathcal{A}, B], \qquad (4b)$$

$$\mathcal{L}_{\mathcal{P}} = \bar{\mathcal{P}}(i\mathcal{D} - m_{\mathcal{P}})\mathcal{P} + \mathcal{C}_{\mathcal{P}N}(\bar{\mathcal{P}}\Gamma_{P}AB + \bar{B}\Gamma_{P}A\mathcal{P}) + \mathcal{H}_{\mathcal{P}N}\bar{\mathcal{P}}\gamma_{5}A\mathcal{P}, \qquad (4c)$$

where *P* is the parity of Θ^+ , $\Gamma_+ = \gamma_5$, and $\Gamma_- = 1$, and $m_{\mathcal{P}}$ is the average of the pentaquark decuplet mass.

The Gell-Mann–Okubo formulae for pentaquark baryons will be obtained from

$$\mathcal{L}_m = \alpha_m \bar{\mathcal{P}} \big(\xi m \xi + \xi^{\dagger} m \xi^{\dagger} \big) \mathcal{P}.$$
⁽⁵⁾

Expanding this, we get the mass splittings $\Delta m_i \equiv m_i - m_P$ within the antidecuplet:

$$\Delta m_{\Theta} = 2\alpha_m m_s, \tag{6a}$$

Download English Version:

https://daneshyari.com/en/article/9861424

Download Persian Version:

https://daneshyari.com/article/9861424

Daneshyari.com