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Abstract

We discuss the relationship between holographic entropy bounds and gravitating systems. In order to obtain a holographic
energy density, we introduce the Bekenstein–Hawking entropySBH and its corresponding energyEBH using the Friedman
equation. We show that the holographic energy bound proposed by Cohen et al. comes from the Bekenstein–Hawking bound
for a weakly gravitating system. Also we find that the holographic energy density with the future event horizon deriving an
accelerating universe could be given by vacuum fluctuations of the energy density.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

Supernova (SN Ia) observations suggest that our
universe is accelerating and the dark energy con-
tributesΩDE � 0.60–0.70 to the critical density of the
present universe[1]. Also cosmic microwave back-
ground (CMB) observations[2] imply that the stan-
dard cosmology is given by the inflation and FRW uni-
verse[3]. A typical candidate for the dark energy is the
cosmological constant. Recently Cohen et al. showed
that in quantum field theory, a short distance cutoff
(UV cutoff: Λ) is related to a long distance cutoff (IR
cutoff: LΛ) due to the limit set by forming a black hole
[4]. In other words, ifρΛ is the quantum zero-point en-
ergy density caused by a UV cutoffΛ, the total energy
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of the system with sizeLΛ should not exceed the mass
of the same size-black hole:L3

ΛρΛ � LΛM2
p with the

Planck mass ofM2
p = 1/G. The largestLΛ is chosen

as the one saturating this inequality and its holographic
energy density is then given byρΛ = 3c2M2

p/8πL2
Λ

with a numerical factor 3c2. TakingLΛ as the size of
the present universe, the resulting energy is compara-
ble to the present dark energy[5]. Even though this
holographic approach leads to the data, this descrip-
tion is incomplete because it fails to explain the dark
energy-dominated present universe[6]. In order to re-
solve this situation, one is forced to introduce another
candidates for IR cutoff. One is the particle horizon
Rh which was used in the holographic description of
cosmology by Fischler and Susskind[8]. This gives
ρΛ ∼ a−2(1+1/c) which impliesωh > −1/3 [9]. This
corresponds to a decelerating universe and unfortu-
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nately is not our case. In order to find an accelerating
universe, we need the future event horizonRh. With
LΛ = Rh one findsρΛ ∼ a−2(1−1/c) to describe the
dark energy withωh < −1/3. This is close enough to
−1 to agree with the data[1]. However, this relation
seems to be rather ad hoc chosen and one has to jus-
tify whether or notρΛ = 3c2M2

p/8πL2
Λ is appropriate

to describe the present universe.
On the other hand, the implications of the cos-

mic holographic principle have been investigated in
the literature[8,10–13]. However, these focused on
the decelerating universe, especially for a radiation-
dominated universe.

In this Letter we will clarify how the cosmic holo-
graphic principle could be used for obtaining the holo-
graphic energy density. This together with the future
event horizon is a candidate for the dark energy to de-
rive an accelerating universe. Further we wish to seek
the origin of the holographic energy density.

2. Cosmic holographic bounds

We briefly review the cosmic holographic bounds
for our purpose. Let us start an(n + 1)-dimensional
Friedman–Robertson–Walker (FRW) metric

(1)ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2 dΩ2

n−1

]
,

wherea is the scale factor of the universe anddΩ2
n−1

denotes the line element of an(n−1)-dimensional unit
sphere. Herek = −1,0,1 represent that the universe is
open, flat, closed, respectively. A cosmological evolu-
tion is determined by the two Friedman equations

H 2 = 16πGn+1

n(n − 1)

E

V
− k

a2
,

(2)Ḣ = −8πGn+1

n − 1

(
E

V
+ p

)
+ k

a2
,

whereH represents the Hubble parameter with the de-
finition H = ȧ/a and the overdot stands for derivative
with respect to the cosmic timet , E is the total energy
of matter filling the universe, andp is its pressure.V is
the volume of the universe,V = anΣn

k with Σn
k being

the volume of ann-dimensional space with a curva-
ture constantk, andGn+1 is the Newton constant in
n + 1 dimensions. Here we assume the equation of

state:p = ωρ,ρ = E/V . First of all, we introduce two
entropies for the holographic description of a universe
[14,15]:

(3)SBV = 2π

n
Ea, SBH = (n − 1)

V

4Gn+1a
,

whereSBV andSBH are called the Bekenstein–Verlinde
entropy and Bekenstein–Hawking entropy, respec-
tively. Then, the first Friedman equation can be rewrit-
ten as

(4)(Ha)2 = 2
SBV

SBH
− k.

We define a quantityEBH which corresponds to en-
ergy needed to form a universe-sized black hole
by analogy withSBV: SBH = (n − 1)V/4Gn+1a ≡
2πEBHa/n. Using these, forHa �

√
2− k, one finds

the Bekenstein–Hawking bound for a weakly self-
gravitating system as

(5)E � EBH ↔ SBV � SBH,

while for Ha �
√

2− k, one finds the cosmic holo-
graphic bound for a strongly self-gravitating system
as

(6)E � EBH ↔ SBV � SBH.

3. Holographic energy bounds

First we study how the gravitational holography
goes well with a(3+ 1)-dimensional effective theory.
For convenience we choose the volume of the sys-
tem asVΛ = 4πL3

Λ/3 ∼ L3
Λ. For an effective quantum

field theory in a box of volumeVΛ with a UV cut-
off Λ,1 its entropy scales extensively as[4]

(7)SΛ ∼ L3
ΛΛ3.

However, the Bekenstein postulated that the maxi-
mum entropy in a box of volumeVΛ behaves non-
extensively, growing only as the enclosed areaAΛ of
the box. We call it the gravitational holography. The
Bekenstein entropy bound is satisfied in the effective
theory if

(8)SΛ ∼ L3
ΛΛ3 � SBH ≡ 2

3
πM2

pL2
Λ ∼ M2

pL2
Λ,

1 Precisely,MΛ is more suitable for an UV cutoff thanΛ, but
we here use the latter instead ofMΛ for convenience.
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