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This paper extends the recursive smooth ambiguity decision model developed in Klibanoff, Marinacci, and
Mukerji (2005, 2009) by relaxing the uniformity imposed on higher order acts. This generalization permits a
separation of intertemporal substitution, risk attitude, and attitudes towards different sources of uncertainty.
Our decision model is suited in situations where subjects may treat several kinds of uncertainty in different
manners. We apply our preference specification to a consumption-based asset pricing model with long run
risks and assess the impact of ambiguity on asset prices and predictability patterns. We find that modeling
attitudes towards uncertainty through high order smooth ambiguity preferences has important implications
for asset prices. Our model generates a highly volatile price-dividend ratio and predictability patterns in line
with the data.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The subjective expected utility (SEU) theory of Savage (1954)
models the behavior of a decisionmaker in the presence of risk. Accord-
ing to Knight (1921), risk refers to a situation in which information is
described by one probability distribution. If there are two or more dis-
tinct probability measures which the DM deems possible, uncertainty
about the true probability measure is considered irrelevant. However,
the thought experiments of Ellsberg (1961) demonstrate that the SEU
approach is inconsistentwith reasonable decisionmaking. Subjects usu-
ally prefer situations inwhich uncertainty concerning the true probabil-
ity measure is low. This type of uncertainty is commonly called
ambiguity.

Several models have been developed that account for ambiguity
aversion.11A prominent example is the multiple priors model of
Gilboa and Schmeidler (1989) and Epstein and Schneider (2003).

Epstein and Schneider (2010) and Etner, Jeleva, and Tallon (2012) re-
view the literature. Our approach is rooted in the smooth ambiguity
model of Klibanoff, Marinacci, and Mukerji (2005), KMM in the follow-
ing. In thismodel, the DMbelieves that several probabilitymeasures are
possible and calculates a certainty equivalent for each of these. She then
uses expected utility to arrive at a single value. Formally, their smooth
ambiguity model has the following representation:
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For each measure μ1, the term in parentheses is the corresponding
certainty equivalent, μ1 is the utility function which displays attitudes
towards risk, while u2 is the utility function which characterizes atti-
tudes towards ambiguity. Similar to SEU, the ultimate probability mea-
sure (now μ2⁎ on the space S2 of probability measures) needs to be
specified. This paper relaxes this assumption. If the DM has vague infor-
mation about μ2⁎, this uncertaintymay cause a loss of utility.We propose
a preference model that accounts for this phenomenon by allowing for
high order ambiguity.

To clarify our approach, we discuss a thought experiment. Consider
the well-known two-color Ellsberg urn containing 10 balls each of
which is either red or black. While a SEU-DM would fix one subjective
distribution (such as 5 red and 5 black balls), a DM with smooth ambi-
guity preferenceswould consider all 11possible compositions. Aggrega-
tionwouldwork as follows: theDMwouldfix one subjective probability
distribution on this set of candidate compositions and aggregate the
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certainty equivalents corresponding to the respective distributions
using expected utility on the second stage. Note the analogy between
decision making with SEU and KMM. In both cases, the DM has to pin
down one probability measure, either on the state space, or on the set
of candidate distributions. We argue that both could be difficult for
the DM due to uncertainty about these distributions. More specifically,
uncertainty about the measure μ2⁎ in the KMM representation should
be accounted for. We allow the DM to consider several candidate
measures μ2 and to have different attitudes towards the different
kinds of uncertainty.

In existing models of ambiguity, studying the implications of ambi-
guity aversion requires a classification of the sources of uncertainty
into two categories (usually called risk and ambiguity). For example,
one may consider the distribution of future consumption to be driven
by a number of state variables. Is the investor ambiguous about one or
possiblymany of these factors and does she treat these sources of uncer-
tainty equally? The usual procedure is to consider diffusive consump-
tion uncertainty as risk and all other sources of uncertainty as
ambiguity.2 If we deviate from the principle that the investor evaluates
all sources of uncertainty equally, it does not seem to be a sensible
assumption that she categorizes them into exactly two classes about
whose elements she has homogeneous tastes. Comparedwith standard
smooth ambiguity preferences, our decision model allows for a more
flexible specification of attitudes towards uncertainty. It differentiates
between the sources of uncertainty and allows assigning each kind an
individual preference parameter.

Ju and Miao (2012) investigate a dynamic version of the smooth
ambiguity model in an endowment economy where the investor has
to learn about a latent factor that drives consumption growth. They
choose a hidden Markov regime-switching model, while Collard et al.
(2012) use an AR(1) specification for the expected growth rate of con-
sumption. Among other findings, both papers show that ambiguity
aversion helps to generate a sizeable equity premium while keeping
the risk aversion parameter at a low value. We follow Bansal and
Yaron (2004) and use autoregressive processes to characterize the
level and the volatility of consumption growth. Extensions of their
long run risks (LRR) model introduce additional state variables and
jump components.3 In contrast to this, we use a similar endowment
process and focus on the preference specification. While Bansal and
Yaron (2004) employ Epstein and Zin (1989) utility, EZ in the following,
we use high order smooth ambiguity preferences.4 As our approach
shares the “smoothness” of the KMM model, we are able to derive
approximate analytic solutions for asset prices.

Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012)
calibrate their models to match important cash-flow and asset pricing
moments. Constantinides and Ghosh (2011) and Beeler and Campbell
(2012) identify several shortcomings of the LRR model. Two notable
problems are the low volatility of the price-dividend ratio and the
predictability of cash-flows and returns. We include these moments as
moment conditions in a GMM estimation of the ambiguity attitude
parameters and find that high aversion against uncertainty in trend
growth rates helps solving these problems. Our model matches impor-
tant unconditional asset pricing moments, including the volatility of
the price-dividend ratio, and brings the predictive power of the price-
dividend ratio for cash-flows and returns in line with the values found
in the data. At the same time, high aversion to ambiguity in trend
growth rates is economically plausible since current trend growth

rates are much harder to identify from observable data than current
volatility levels.

The remainder of this paper is organized as follows. In Section 2, we
introduce high order smooth ambiguity preferences and derive the
pricing kernel. In Section 3, we exemplify the impact of high order
smooth ambiguity preference on asset prices in a LRR model. Section 4
concludes.

2. High order smooth ambiguity preferences

In this section, we introduce high order smooth ambiguity prefer-
ences. We start with a static setting and then generalize to a recursive
model of preference in the manner of Kreps and Porteus (1978) and
Epstein and Zin (1989). Our approach extends the decision model of
Klibanoff et al. (2005), which was put in a dynamic setting by
Klibanoff, Marinacci, and Mukerji (2009) and Ju and Miao (2012). An
axiomatic foundation is provided by Hayashi and Miao (2011). The
relation between high order smooth ambiguity preferences and asset
prices is discussed in Section 2.3.

2.1. The static setting

Let S1 be a state space, equippedwith a sigma-algebraΣ1. A first order
act is a usual Savage act, i.e. a map f : S1→C to a set C of consequences.
We assume that C is a convex subset of ℝ.5 A1 denotes the set of all
Σ1-measurable bounded first order acts. The DM's preferences are
given by a binary relation ⪯1 on A1. If a DM agrees with the validity
of certain axioms (see Savage (1954)), there is a utility function u1 :

A1→ℝ such that she prefers an act f to an act g, i.e. f ≻1g, if and only if
F1( f) ≥ F1(g), where F1 is the functional

F1 : A1→ℝ;

f ↦
Z
S1
u1∘ f dμ�

1:

Here, μ1⁎ denotes a probability measure on themeasure space (S1, Σ1),
which is assumed to be known to the DM. Another interpretation might
be that she is uncertain about the true probabilitymeasure, but not averse
against this kind of uncertainty. In this case, she simply aggregates differ-
ent measures to the single measure μ1⁎.

If the DM is averse against ambiguity, her preferences do not permit
such an aggregation. Let S2 denote the set of probabilitymeasures on the
measure space (S1, Σ1).6 We equip S2 with the vague topology and con-
sider the corresponding Borel-sigma-algebraΣ2 on S2. A second order act
is amap f : S2→Cand the set of allΣ2-measurable bounded secondorder
acts is denoted by A2. We assume that the DM entertains a preference
relation ≺2 on A2.

KMM assume that the DM is able to pin down a single probability
measure on (S2, Σ2), called μ2⁎ for the moment. This could e.g. be the
case if the DM knew μ2⁎ or is not averse against uncertainty about it.
She would then aggregate all candidate probability measures on (S2, Σ2)
to a single one. KMM show that a DM that accepts the validity of certain
assumptions prefers the first order act f∈A1 to the act g∈A1, i.e. f≻1g,
if and only if F2(f) ≥ F2(g), where F2 denotes the functional

F2 : A1 →ℝ;

f ↦
Z
S2
u2 u−1

1

Z
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u1∘ f dμ1
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dμ�

2 μ1ð Þ;

and u2 : C→ℝ denotes a further utility function. Intuitively, the DM
calculates the certainty equivalent for each possible measure μ1 and

2 See Collard, Mukerji, Sheppard, and Tallon (2012), Drechsler (2013), Ju and Miao
(2012), and the references therein.

3 See e.g. Eraker and Shaliastovich (2008), Bollerslev, Tauchen, and Zhou (2009),
Benzoni, Collin-Dufresne, and Goldstein (2011), and Drechsler and Yaron (2011).

4 Bonomo, Garcia,Meddahi, and Tedongap (2011) also explore the endowment process
of Bansal and Yaron (2004) using “exotic” preferences. They consider the generalized dis-
appointment aversion of Routledge and Zin (2010) and find that their model can improve
upon the benchmark LRR model.

5 More generally, onemay assume thatC is a connected separable topological space, see
Ghirardato and Marinacci (2003).

6 Klibanoff et al. (2005) consider the state space S1=Ω× (0, 1]. Theydefine S2 as the set
of all countably additive product probability measures with the Lebesgue measure on the
Borel-sigma-algebra on (0, 1]. Our treatment does not require such a specification.
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