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Abstract

The Galilean-invariant field theories are quantized by using the canonical method and the
five-dimensional Lorentz-like covariant expressions of non-relativistic field equations. This
method is motivated by the fact that the extended Galilei group in 3 + 1 dimensions is a sub-
group of the inhomogeneous Lorentz group in 4 + 1 dimensions. First, we consider complex
scalar fields, where the Schrödinger field follows from a reduction of the Klein–Gordon equa-
tion in the extended space. The underlying discrete symmetries are discussed, and we calculate
the scattering cross-sections for the Coulomb interaction and for the self-interacting term kU4.
Then, we turn to the Dirac equation, which, upon dimensional reduction, leads to the Lévy-
Leblond equations. Like its relativistic analogue, the model allows for the existence of antipar-
ticles. Scattering amplitudes and cross-sections are calculated for the Coulomb interaction, the
electron–electron and the electron–positron scattering. These examples show that the so-called
�non-relativistic� approximations, obtained in low-velocity limits, must be treated with great
care to be Galilei-invariant. The non-relativistic Proca field is discussed briefly.
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1. Introduction

This article is a continuation of a recent article where Galilei-invariant theories of
scalar fields have been quantized [1]. It lies within the scope of a program which ex-
ploits a five-dimensional covariant formulation of Galilean covariance to understand
non-relativistic field theories [2–4]. In these articles, we have applied an extended
space-time approach such as devised in [5,6]. There exist similar procedures, dis-
cussed in [7,8]. This has been utilized recently to study fluid dynamics [9,10]. The
appearance of this approach in physics has been ubiquitous. It probably dates back
to nearly 35 years ago, when Susskind investigated the perturbative behaviour of
quantum electrodynamics in the limit of high-velocity processes, more specifically,
the use of infinite-momentum frame for strong interactions [11]. He was using what
is referred to nowadays as the light-front formalism [12]. As far as we are concerned,
a remarkable achievement in these papers was to notice the appearance of the 2 + 1
Galilean group related to the motions transverse to the direction of the infinite
momentum.

A wealth of non-relativistic phenomena, particularly in condensed matter physics,
low-energy nuclear physics, and many-body theory [13], are likely to benefit from
any such convenient tool. Indeed, although it is usually understated, Galilean invari-
ance is crucial for the applications of the methods of quantum field theory to many
low-temperature systems such as superfluids, superconductors, and Bose–Einstein
condensation. A first advantage of the extended space-time formalism is that
Galilean covariance is manifest throughout the calculations, in the same way that
Lorentz covariance is manifest in relativistic theories. Therefore, the various proce-
dures involved are carried out in a way quite similar to the relativistic ones. Another,
rather technical, advantage is that projective representations may be avoided when
one is willing to pay the price of working in 4 + 1 space-time. Finally, since the Poin-
caré group in 4 + 1 dimensions clearly contains as a Lie subgroup the usual Poincaré
group of 3 + 1 dimensions, in addition to the Galilei group of 3 + 1 space-time, then
we may derive not only Galilean invariant results, but also Lorentz invariant results
simply by using a different reduction [6,7]. This most desirable feature has been
utilized in the investigation of fluid dynamics [9,10].

The formalism begins with a extended space Gð4;1Þ, which is actually a Minkowski
space in 4 + 1 dimensions. Group theoretically speaking, we simply exploit the fact
that the (centrally extended) Galilei group in 3 + 1 space-time is a subgroup of the
Poincaré group in 4 + 1 dimensions. Hereafter, we will not repeat the different phys-
ical motivations for the enlarged manifold, since it can be found in the references
mentioned earlier. Let us just state that we work with Galilean five-vectors

(X, X4, X5), which transform under Galilean boosts as:

X0 ¼ X� VX 4;

X 40 ¼ X 4;

X 50 ¼ X 5 � V � Xþ 1

2
V2X 4;
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