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Abstract

The nature of singularities that arise in the mathematical modeling of free-surface flows and the ways of their analysis
and regularization aimed at removing the physically unacceptable features is one of fundamental issues in theoretical fluid
dynamics. The present work considers the type of the free-surface curvature singularity emerging in the steady two-dimensional
convergent flow of a Newtonian fluid near a free boundary. The unphysical singularities in the flow field, unavoidable in the
conventional model, are removed by describing this flow as a particular case of the interface formation/disappearance process
in the framework of an earlier developed macroscopic theory of such processes which is applied without any ad hoc alterations.
The near-field asymptotic analysis of the problem shows that at finite capillary numbers the singularity of the free-surface
curvature is always a sharp corner, not a cusp.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

A theoretical possibility that a free surface between
two immiscible fluids can have a singularity of curva-
ture due to the fluids’ motion was first investigated by
Richardson[1], who considered the deformation of a
liquid–vacuum interface with a constant surface ten-
sion in the Stokes flow. His elegant analysis based on
the technique of conformal mapping produced exact
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analytical results showing that, if one presumes a pri-
ori that there is a singularity of curvature at a finite
capillary number, then this singularity can only be a
cusp pointing into the fluid with the stream function in
its vicinity, to leading order inr asr → 0, given by

(1)ψ(r, θ) = σe

2πµ
r logr sinθ,

wherer and θ are polar coordinates in the plane of
flow with the axis of symmetryθ = 0 pointing into the
fluid, µ is the fluid’s viscosity andσe is the surface
tension at the free surface. It should be noted, how-
ever, that according to this solution, the rate of energy
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dissipation in the flow is nonintegrable and hence the
total dissipation of energy in the vicinity of the cusp is
infinite.

Experiments reported by Joseph et al.[2] and re-
peated in a slightly different flow configuration by
Jeong and Moffatt[3] demonstrated that a singularity
of curvature can exist in reality and indeed itlooks like
a cusp. More importantly, experiments[3] have shown
that the appearance of the singularity is associated
with a qualitative change in the flow kinematics: the
fluid particles belonging to the free surface (‘marked’
by the powder sprinkled on it) no longer stay there
at all times; instead, they are swept through the sin-
gularity into the interior of the fluid. Jeong and Mof-
fatt investigated the phenomenon theoretically, again
in the framework of the standard model but without
presuming a priori that there is a singularity of free-
surface curvature. Their exact analytical solution, also
obtained by conformal mapping, shows that for the
convergent Stokes flow generated by a dipole placed
underneath a free surface the radius of curvature scaled
with the characteristic lengthscale of the fluid motion,
R/d , decreases exponentially with the capillary num-
ber Ca (= µU/σe; U is the characteristic velocity of
the fluid):

(2)R/d ∼ 256

3
exp(−32πCa).

Then, as the capillary number increases towards that
of the apparent cusping observed in experiments (and
the associated qualitative change in the flow kinemat-
ics), the radius of curvature of the free surface, which
in the model is, by definition, a macroscopic quantity,
goes into the region of molecular and then submole-
cular length scales. In other words, the solution falls
outside the limits of applicability of the model in the
framework of which it was obtained. This outcome of
the modeling is important per se, irrespective of exper-
iments, and the latter merely confirm that the problem
is a real one. (In some experiments, air entrainment is
reported to occur before the formation of the singular-
ity of curvature[4], whereas in others it is specifically
emphasized that the singularity is observed without
any evidence of air entrainment[2,3] which eventu-
ally develops only after a further increase in the flow
rate [2]. In any case, the presence of air is a physi-
cal factoradditional to the essential hydrodynamics
of the convergent flow and hence its influence can be

Fig. 1. Schematic illustration of the physical picture of the flow near
a singularity of free-surface curvature. In the continuum approxima-
tion, the interfacial layers 1(a) are modeled as sharp interfaces 1(b),
the transition region 2(a) is seen as a contact line 2(b), and the sur-
face-tension-relaxation tail 3(a) becomes a gradually disappearing
internal interface 3(b). For the total force acting on the control vol-
ume ABCD, with the boundaries AB and CD lying, physically, just
outside the range of intermolecular forces, to be zero, the surface
tensions acting on AD can only be balanced by shear stress acting
on AB and CD. Then, to balance this stress at every point of the in-
ternal interface there must be the surface-tension gradient along it.

manipulated. For example, one can delay air entrain-
ment thus allowing the singularity to form by placing
a low-volatile fluid in a low-pressure chamber, similar
to how air entrainment is postponed in experiments on
dynamic wetting[5].)

Thus, the convergent flow considered in the frame-
work of the conventional model presents a paradox:
there is either the solution(1) with a singularity
at a finite capillary number and the associated infi-
nite dissipation of energy, or the solution leading to
(2) and hence an emerging singularity as the model
falls outside its limits of applicability. It should be
emphasized that, given that both of the above solu-
tions are exact, the paradox cannot be attributed to
(over)simplifications made in obtaining them; it is in-
herent in the model itself.

The shortcomings of the standard model were re-
moved in[6] where the line singularity of curvature
was described as a ‘contact line’ formed at the inter-
section of the free surface and an ‘internal interface’
(Fig. 1). The existence of this interface is suggested
by the flow kinematics observed experimentally: as the
free surface is swept through the contact line into the
interior of the fluid[3], its surface properties will have
to vanish, i.e. to relax to new equilibrium values, and
hence there will be a surface-tension-relaxation tail
(i.e. an ‘internal interface’) stretching from the con-
tact line into the bulk. It was shown that this approach
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