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Abstract

The particular exact solutions of the porous media equation that usually occurs in nonlinear problems of heat and mass
transfer, and in biological systems are obtained using Adomian’s decomposition method. Also, numerical comparison of par-
ticular solutions in the decomposition method indicate that there is a very good agreement between the numerical solutions and
particular exact solutions in terms of efficiency and accuracy.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this Letter, we consider the nonlinear heat equa-
tion called the porous media equation

(1)
∂u

∂t
= ∂

∂x

(
um ∂u

∂x

)
,

wherem is a rational number.
Finding the particular exact solutions that have a

physical or biological interpretation for the nonlinear
equations of the form(1) is of fundamental impor-
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tance. This equation often occurs in nonlinear prob-
lems of heat and mass transfer, combustion theory, and
flows in porous media. For example, it describes un-
steady heat transfer in a quiescent medium with the
heat diffusivity being a power-law function of temper-
ature[12].

Eq. (1) has also applications to many physical sys-
tems including the fluid dynamics of thin films[11].
Murray [6] describes how this model has been used to
represent “population pressure” in biological systems.
Eq. (1) is called a degenerate parabolic differential
equation because the diffusion coefficientD(u) = um

does not satisfy the condition for classical diffusion
equations,D(u) > 0 [11]. For the motion of thin vis-
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Table 1
Numerical results for|u(x, t) − φ50(x, t)| whereu(x, t) = 1

x−t for Eq.(12)

ti |xi 0.5 0.6 0.65 0.7 0.8

0.11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.2 0.0000E+00 1.3322E−15 1.3322E−15 0.0000E+00 0.0000E+00
0.3 4.0413E−11 2.6645E−15 0.0000E+00 0.0000E+00 0.0000E+00
0.4 1.4272E−4 7.8416E−9 1.1465E−10 2.3510E−12 2.2204E−15
0.45 0.1030E+00 3.7754E−6 5.1752E−8 1.0180E−9 9.1571E−13

cous films,(1) with m = 3 can be derived from the
Navier–Stokes equations. Lacking a physical law to
describe the complex behavior in a system, an appro-
priate value for the parameterm can be determined by
comparing known solutions with empirical data[11].

In the next section, the Adomian’s decomposition
method (ADM)[1] is applied to Eq.(1) to obtain the
particular exact solutions of it. It is well known that
this method avoids linearization and physically unreal-
istic assumptions, and provides an efficient numerical
solution with high accuracy[3,4,9,10].

2. The method

Eq.(1) can be written in an operator form

(2)Lt(u) = Lx

(
umLxu

)
,

with the initial and boundary conditions, where the no-
tationsLt = ∂

∂t
andLx = ∂

∂x
symbolize the linear dif-

ferential operators. We assume the integration inverse
operatorsL−1

t and L−1
x exist, and they are defined

asL−1
t = ∫ t

0( · ) dt andL−1
x = ∫ x

0 ( · ) dx, respectively.
Therefore, one can write the solution int direction as
[1]

(3)u(x, t) = u(x,0) + L−1
t

[
Lx

(
Φ(u)

)]
,

whereΦ(u) = umux . By ADM [1] one can write the
solution in series form as

(4)u(x, t) =
∞∑

n=0

un(x, t).

To find the solutions int direction, one solves the
recursive relations

(5)
u0 = u(x,0), un+1 = L−1

t

[
Lx(An)

]
, n � 0,

respectively, where the Adomian polynomials are[1,
3,4]

(6)An = 1

n!
dn

dλn

[
Φ

( ∞∑
n=0

λnun

)]
λ=0

, n � 0.

We obtain the first few Adomian polynomials for
Φ(u) = umux as

A0 = um
0 (u0)x,

A1 = mum−1
0 u1(u0)x + um

0 (u1)x,

A2 = mum−1
0 u2(u0)x + mum−1

0 u1(u1)x

+ um
0 (u2)x + m

2
(m − 1)um−2

0 u2
1(u0)x,

A3 = mum−1
0 u3(u0)x + m(m − 1)um−2

0 u1u2(u0)x

+ m

2
(m − 1)um−2

0 u3
1(u0)x + mum−1

0 u2(u1)x

+ mum−1
0 u1(u2)x + um

0 (u3)x,

...

The convergence of the decomposition series(4) is
studied in[2].

In the following section we provide some examples
and demonstrate the absolute errors|u(x, t)−φn(x, t)|
in Tables 1–2, whereu(x, t) is the particular exact so-
lution andφn(x, t) is the partial sum

(7)φn(x, t) =
n∑

k=0

uk(x, t), n � 0.

As it is clear from(4) and(7)

(8)u(x, t) = lim
n→∞φn(x, t).

Equations of the form(1) admit traveling-wave solu-
tionsu = u(kx +λt) wherek andλ are constants[12].
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