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Dynamic coordinated control laws in multiple agent models
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Abstract

We present an active control scheme of a kinetic model of swarming. It has been shown previously that the global control
scheme for the model, presented in [Systems Control Lett. 52 (2004) 25], gives rise to spontaneous collective organization of
agents into a unified coherent swarm, via steering controls and utilizing long-range attractive and short-range repulsive inter-
actions. We extend these results by presenting control laws whereby a single swarm is broken into independently functioning
subswarm clusters. The transition between one coordinated swarm and multiple clustered subswarms is managed simply with
a homotopy parameter. Additionally, we present as an alternate formulation, a local control law for the same model, which
implements dynamic barrier avoidance behavior, and in which swarm coherence emerges spontaneously.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Multiple agent systems are comprised of a multi-
tude of simple autonomous vehicles, which are loosely
coupled via communication in order to achieve some
desired goal. It is anticipated that such systems will
play a key role in future deployments, as the drive to
miniaturize electronic devices results in smaller and
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more capable self-mobile machines with limited deci-
sion making abilities. Thus, one of the main research
areas of interest is the dynamic pattern formation and
control of a large number of agents[2]. In particular,
given a specific dynamical system composed of a large
number of individual vehicles, each with specified lim-
ited decision-making and communication abilities, a
vital question is under what conditions large-scale ag-
gregate dynamics may be controlled to form coherent
structures, or patterns. An example from electronics
is a concept paper[3] which shows that complex pat-
terns can arise from a large array of micro actuators
interconnected to mimic a finite difference approxi-
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mation of standard reaction–diffusion partial differ-
ential equations (PDE). However, it is a static the-
ory based on quite standard pattern formation theo-
ries from reaction–diffusion which assumes pure local
coupling.

In contrast, many biological examples of coherent
dynamical motion (swarming) exist in nature. Popu-
lations such as bees, locusts, and wolves often move
in coordinated but localized efforts toward a partic-
ular target. In addition many more examples abound
of populations of individuals that move according to
local rules, and whose aggregate dynamics achieve
an overall large-scale complex pattern or state. Bac-
terial colonies, which evolve in part via chemotactic
response, are such an example. The mathematical bi-
ology community has been exploring models for an-
imal swarms, and this work pinpoints some of the
difficulties (see the survey paper[4]). Traditional mod-
els for biology populations involve local PDE for the
population density[5]. Edelstein-Keshet et al.[6] re-
cently considered such a model in one space dimen-
sion for African migratory locusts. These insects have
a gregarious phase in which swarms of individuals
can travel for days over thousands of miles. Evidence
exists that the swarms remain cohesive even in the
absence of a nutrient gradient. The analysis of[6]
shows that such cohesive swarms cannot be described
by traveling wave solutions of their one-dimensional
advection–diffusion model. More recently, Mogilner
and Edelstein-Keshet consider nonlocal interactions,
in which the drift velocity of the population is de-
termined by a convolution operator with the entire
population [7]. These models, resulting in integro-
differential equations, do sometimes produce coherent
band-like structure. Earlier work by Edelstein-Keshet
and Watmough[8] on army ant swarms, considers a
one-dimensional model and shows the existence of
traveling wave solutions for the leading edge of the
pack, but they do not consider band-like solutions that
would describe something like a locust swarm. These
particular examples involve one-dimensional models
and simulations. In summary, most studies of biologi-
cal swarming involve models from continuum theory,
many of which are based on some form of local com-
munication, which are modeled by way of interactions
or couplings.

The statistical physics community has recently
tried to understand similar problems in situations

where the number of individuals are very large. Sta-
tistical information derived for large numbers is less
relevant to formations involving smaller numbers of
individuals. However, the connection between the dis-
crete and the continuous is an important problem that
is well-studied in this field. The particle approach in-
volves starting with simple rules of motion, involving
combinations of biased random walks, sampling of
motions and positions of nearby neighbors, with some
governing strategy designed to mimic core compo-
nents of animal interactions. For example, Schweitzer
et al. [9] consider a theory of canonical-dissipative
systems and the energetic conditions for swarming.
Grünbaum[10] has derived advection–diffusion equa-
tions for internal state-mediated biased random walks.
Mogilner and Edelstein-Keshet[11] consider both
continuum and cellular automata models for popula-
tions of self-aligning objects. Stöcker[12] considers
a hexagonally based cellular automata model for tuna
school formation. These are just a few examples. In all
cases, the local rules are precisely defined and aggre-
gate motion can be observed in numerical simulations.

As an alternative to understanding coherent swarm
structures that use finite models (noncontinuum theo-
ries), a recent body of work considers general particle-
based models for self-propelled organisms (see, for
example,[13–16]). Collective motion and swarming
is observed along with interesting aspects of dynamic
phase transitions, including crystalline like motion,
liquid, solid, and gas-like states. Toner and Tu[17–19]
use renormalization group ideas to study flocking mo-
tion in a particle-based model. Some of this work par-
allels classical statistical theory of transport which de-
rives hydrodynamic equations from local interaction
models[20–22]. The approach considered by Chang,
et al. [23] considers agents in a scalar potential field
and utilizes gyroscopic and braking forces.

In most cases presented, the agents are self-pro-
pelled and the nature of the coupling or communica-
tion imposes a given pattern. Here we consider similar
aspects, but with the idea of controlling the commu-
nication to form patterns. In this Letter we consider
kinetic models in which, depending on the control law
used, the self-propelled agents communicate, either lo-
cally within a specified radius about each agent, or
globally with every other agent in the swarm. Under
appropriate choices of gyroscopic control laws, co-
herent motion of agents is observed. In general, the
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