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The nonextensive gas: a kinetic approach
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Abstract

We discuss a kinetic nonextensive generalization of the Maxwellian ideal gas. The analysis rests on two basic assumptions:
(i) instead of the standard Gaussian form, theq-gas is described by a power-law velocity distribution as suggested in the
nonextensive Tsallis’ framework (ii) theq-nonextensive generalization of the Boltzmann entropy formula governs the behavior
of theq-gas. In this context, we show that the pressure and the internal energy are kinetically modified, but the general equation
of state,PV = 2U/3, remains valid. The adiabatic index is now a function of the nonextensive parameter,γ = Cp/CV = 5/3q.
However, the standard expression relating the specific heats (at constant pressure and volume) with the coefficient of expansion
and the isothermal compressibility,CP − CV = T V α2/κT , is not modified.
 2005 Elsevier B.V. All rights reserved.
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It is widely known that all gases experience a strong
tendency to have a universal behavior at the limit of
very high temperatures and/or very low densities. The
so-called perfect or ideal gas is an idealization of this
limiting situation, being formally defined as a system
of N free noninteracting particles. In the kinetic ap-
proach, the collisional equilibrium of a classical dilute
gas is usually described by the celebrated Maxwellian
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velocity distribution which is a stationary solution of
the Boltzmann transport equation. Its entropy is also
a very well defined quantity which can be calculated
through the standard Boltzmann expression[1,2]

(1)− S

kBV
=

∫
f lnf d3v.

The functionf (v) is the Maxwellian distribution

(2)f (v) = Ae−mv2/kBT ,

whereA = n(m/2πkBT )3/2 is the dimensional nor-
malization constant (n = N/V is the concentration,T
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is the temperature, andkB is the Boltzmann constant).
By inserting the above expression into(1) and carry-
ing out the integral one finds that the entropy takes the
form

(3)− S

kBV
= n

(
ln

[
n

(
m

2πkBT

)]
− 3

2

)
.

In addition, if one assumes that the parametersT and
V are the independent thermodynamic variables, or
equivalently,S = S(T ,V ), the differential expression
corresponding to the above entropy formula reads

(4)dS = NkB

(
dV

V
+ 3

2

dT

T

)
.

The remaining basic thermodynamic relations (pres-
sure and internal energy) for an ideal gas follows from
the above expression by comparing it with the so-
called Gibbs law (T dS = dU + p dV ). As widely
known, the specific heats, and relations likePV =
2U/3, as well as other important measurable quanti-
ties are immediately computed if one introduces the
kinetic definition of the pressure[1]

(5)P = m

3

∫
f v2 d3v.

On the other hand, the kinetic foundations of the
nonextensive formalism[3–5] has been extensively
discussed in the literature[6,7]. Instead of the standard
Gaussian expression adopted in the extensive kinetic
theory, the new approach is based on a power-law dis-
tribution. In this case, the distribution function reads
(see, for instance,[7]):

(6)f (v) = B

(
1− (1− q)

mv2

2kBT

)1/1−q

,

where the constantB is also defined by the normaliza-
tion condition

(7)
∫

f (v) d3v = n,

being explicitly aq-dependent quantity, namely,

(8)B =




A(1− q)1/2 5−3q
2

3−q
2 �

(1
2 + 1

1−q

)
/�

( 1
1−q

)
if 1/3< q � 1,

A(q − 1)3/2�
( 1

q−1

)
/�

( 1
q−1 − 3

2

)
if q � 1.

As expected, in the limiting caseq = 1, both expres-
sions reduce to the standard Maxwellian ones[7].

Recently, some authors have discussed the ideal gas
within the nonextensive scenario working in the en-
semble theory[8–13]. Here we will explore a different
route. The main properties of the ideal nonextensive
gas will discussed in terms of a kinetic formulation.
The basic aim is to determine the analytic expressions
generalizing the standard kinetic equilibrium approach
describing the extensive ideal gas. As we shall see, the
whole argument is quite similar to what happens in
the extensive treatment. For instance, in order to com-
pute the differentialdSq , we consider the new expres-
sion for the entropy, and the associated nonextensive
distribution. This result it will be compared with the
standard thermodynamic expression for the Gibbs law
which must be obeyed by any gaseous system. As we
shall see, this approach allow us to obtain the internal
energy, the pressure, and the equation of state. In ad-
dition, by computing the specific heats (Cp andCv),
it will be seen that the standard expression relating
such quantities with the response functions (isother-
mal compressibility and the coefficient of expansion)
is not modified.

The kinetic version of Tsallis’ entropy for an ho-
mogeneous and isotropic gas occupying a volumeV

can be written as[7]

(9)− Sq

kBV
=

∫
B0

(
f

B0

)q

lnq

(
f

B0

)
d3v,

where the dimensional constantB0 has been intro-
duced by mathematical convenience in order to make
the argument of the function lnq f dimensionless.
Note that ifq = 1 the standard relation is recovered
up to an irrelevant integral factor. Theq-logarithmic
function is defined as[4]

(10)lnq f = f 1−q − 1

1− q
, f, q > 0.

The basic property ofSq is the non-additivity for
q �= 1. Given two independent systemsA andB, the
entropy composition rule verifies[3]

Sq(A + B) = Sq(A) + Sq(B)

+ (1− q)k−1
B Sq(A)Sq(B).

In what follows, we focus our attention in the ki-
netic description of the particles using the power law
distribution function given by(6). To begin with, we
recall that the existence of statistical correlations are
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