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Near-corner waves of the Camassa–Holm equation✩
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Abstract

The travelling waves of the Camassa–Holm equation exist only up to a maximum amplitude. The limiting wave has a dis-
continuous slope, a so-called “corner wave”. Here, we investigate the transition from smooth wave to corner wave through a
mixture of matched asymptotic expansions, perturbation theory and numerical computations. There are both striking similarities
and equally dramatic differences from other known examples of near-corner waves.
 2005 Elsevier B.V. All rights reserved.

PACS: 47.35.+i; 02.30.Oz; 05.45

1. Introduction

Many species of waves exhibit the cnoidal wave/
corner wave/breaking wave (CCB) scenario. That is,
there are smooth spatially-periodic travelling waves
(“cnoidal waves”) for small amplitude, breaking waves
(only) for large amplitude, and a limiting travelling
wave of maximum amplitude which has a discontin-
uous slope—a “corner wave”. A list of examples is
given in[6] (and less comprehensively) in[4].
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The ubiquity of the CCB scenario raises all sorts
of questions. How much of the smooth-to-corner tran-
sition is generic? What qualitative details are non-
generic and depend on the specific wave equation?

We have systematically studied a number of wave
equations to try to answer these questions[3–6]. In this
Letter, we examine the smooth-to-corner transition for
the solitary waves of the Camassa–Holm equation.
The pioneering article of Camassa and Holm[7] was
cited more than two hundred times in the first decade
after its publication. The physical and mathematical
interest is explained in[1,8,10,14].

The larger goal is to understand what is generic and
non-generic about the CCB bifurcation. For compari-
son purposes, Whitham’s family of wave equations is
particularly useful because these are both very simi-
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lar and very different from the Camassa–Holm equa-
tion. We shall quote some formulas for comparison
throughout the Letter, and then discuss the similarities
and differences at length in Section4.3.

2. Background on the CH equation

2.1. Implicit solution

For travelling waves, the Camassa–Holm equation
is

cuXXX + (2κ − c)uX − 3uuX − 2uXuXX

(1)− uuXXX = 0,

wherec is the phase speed,κ is a parameter, and the
coordinateX ≡ x−ct . If we (i) integrate term-by-term
(ii) multiply the once-integrated equation by−2uX

and integrate term-by-term a second time (iii) move
the non-derivative terms to the right-hand-side of the
twice-integrated equation and (iv) take the square root
of both sides, we obtain

(2)uX =
√

(2κ − c)u2 + u3 − 2γ u + µ

(u − c)
,

whereγ andµ are constants of integration. This can
be solved by the method of separation-of-variables as

(3)X =
∫

du

√
(u − c)

(2κ − c)u2 + u3 − 2γ u + µ
.

This applies both to spatially-periodic travelling waves
and solitary waves. Because cnoidal waves and soli-
tons are very closely related[2], we shall restrict
our attention to solitary waves, i.e., waves such that
|u(X)| → 0 as|X| → ∞. For solitons,γ = µ = 0.

For this special case, introduce the new variable[8]

(4)ν =
√

c − u

c − 2κ − u
↔ u = c − 2κ

ν2

ν2 − 1
.

Separation-of-variables then gives the solution inim-
plicit form as(4) plus

(5)exp(−X) =
{

ν − ρ

ν + ρ

}ρ(
ν + 1

ν − 1

)
,

where

(6)ρ ≡
√

c

c − 2κ

as derived by Camassa, Holm and Hyman[8].

2.2. Theorems

The following propositions are useful in what fol-
lows:

(1) If u(X; c′, κ ′) is a travelling wave (soliton or non-
soliton) of the CH equation, thenσu(X; c, κ) is a
solution withc = σc′ andκ = σκ ′ [2].

(2) For the Camassa–Holm solitary wave (including
the corner wave or “peakon”),

(7)u(0) = c − 2κ.

(3) In the limit κ/c → 0, the solitary wave tends to
the corner wave

(8)ucorner(X) = exp
(−|X|).

The first theorem implies that it is always sufficient to
consider the case ofunit phase speed; travelling waves
of other speeds can always be obtained by applying the
dilational symmetry.

The perturbation parameter that measures nearness
to the corner wave is

(9)ε ≡ c − u(0).

Here, the parameter of the CH equation,κ , plays the
same role and the second theorem shows thatε = 2κ .

The third proposition furnishes an explicit, analytic
form for the corner wave; this is also the “outer ap-
proximation” in the matched asymptotic approxima-
tion of the near-corner wave. It follows that the in-
teresting and difficult challenge is to understand the
“inner approximation” where the corner is rounded off
whenε andκ are small, but not zero.

3. Matched asymptotics for near-corner waves

For Camassa–Holm solitons, surface water waves,
Whitham’s equation family and so on, the “outer ap-
proximation” to the near-corner wave is always the
corner wave itself. This approximation fails in the in-
ner region of widthO(ε) where ε ≡ c − u(0). For
all these wave equations, the inner approximation is
defined by a differential equation which is most con-
veniently expressed in terms of the modified unknown

(10)w(X) ≡ (
u(X) − c

)
/ε.



Download English Version:

https://daneshyari.com/en/article/9868352

Download Persian Version:

https://daneshyari.com/article/9868352

Daneshyari.com

https://daneshyari.com/en/article/9868352
https://daneshyari.com/article/9868352
https://daneshyari.com

