Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Revealing the challenges of low template DNA analysis with the prototype Ion AmpliSeqTM Identity panel v2.3 on the PGMTM Sequencer

Salata Elena^{a,*,1}, Agostino Alessandro^{b,1}, Ciuna Ignazio^a, Wootton Sharon^c, Ripani Luigi^a, Berti Andrea^a

^a Carabinieri, Investigazioni Scientifiche di Roma, Sezione di Biologia, Rome, Italy

^b Thermo Fisher Scientific, Monza, Italy

^c Thermo Fisher Scientific, South San Francisco, CA, USA

ARTICLE INFO

Article history: Received 8 December 2014 Received in revised form 8 June 2015 Accepted 13 July 2015 Available online 19 July 2015

Keywords: Ion AmpliSeqTM Identity panel PGMTM Sequencer Massive parallel sequencing STR analysis Quantifiler^{R0} LtDNA

ABSTRACT

Forensic scientists frequently have to deal with the analysis of challenging sources of DNA such as degraded and low template DNA (LtDNA). The capacity to genotype difficult biological traces has been facilitated by emerging technologies. Massive parallel sequencing (MPS) on microchip among other technologies promises high sensitivity and discrimination power. In this study we evaluated the combined use of the Quantifiler[®] Trio DNA Quantification Kit with the prototype Ion AmpliSeqTM Identity panel v2.3 and PGMTM platform in LtDNA samples. Coverage, allele balance, allele drop-out/in, consistency and variance were assessed. Overall, the results showed a great level of performance and consistency in terms of genotyping capability even under the most challenging conditions, making it possible to obtain consistent SNP profiles with 31 pg of DNA and partial informative profiles with as little as 5 pg or with severely degraded DNA. In addition, we demonstrated that the stochastic effects observed in some samples are due to the amplification of the library rather than sequencing.

Based on our data, we proposed general recommendations for the analysis of casework samples starting from the use of quantification data, which proved to be critical in deciding whether to process the samples via STR (short tandem repeat) analysis or SNP MPS.

In our experience, the use of the prototype Ion AmpliSeq[™] Identity panel v2.3 has revealed a new applicable solution for processing LtDNAs. This approach provides users with an additional tool for analysis of traces that either would not give informative results with conventional STR-based techniques. © 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The need for alternative markers for human identification purposes has been discussed in the last 2 decades [1]. Currently, short tandem repeat (STR) markers have been the most used targets due to high level of discriminatory capacity even in the most challenging situations. The DNA degradation process, due to bacterial activities or heat and chemical stresses, leads to very short fragments [2] that only fall within the lower end of STR amplicons size range. In cases of severely degraded DNA, STRs analysis is limited due to restrictions in the length of the amplicons that can be generated. Mini-STR analysis has been implemented as an alternative [3,4] but single nucleotide polymorphism (SNP) analysis

E-mail addresses: elena.salata@carabinieri.it (S. Elena),

slessandro.agostino@thermofisher.com (A. Alessandro),

¹ These authors equally contributed to this paper.

provides a greater guarantee of genotyping severely fragmented DNA as the variation of interest is much shorter [5]. In order to reach the same level of discrimination as commercially available STR kits, it is necessary to generate panels with a sufficient number of informative SNPs [1]. The selection of SNPs to include in these types of panels has been debated and many alternative options have been released in the last 10-15 years to be used on capillary electrophoresis or Real-time PCR platforms [6-9]. Total number of markers that can be analyzed in a single experiment, as well as cost and time to results were the main limitations that prevented routine adoption of a SNP multiplex kit in forensic laboratories. Furthermore, the analysis of mixed tracks appears to be a challenge due to the fact that a single SNP marker is associated with only two allelic variants. This makes it difficult to interpret the analysis of complex mixtures especially when contributors mixture ratios are very unbalanced. Massive parallel sequencing (MPS) is currently the most promising technology for analyzing genotypes at a sequencing level, where several samples and a high number of markers can be processed simultaneously [10,11]. The Personal Genome Machine®

^{*} Corresponding author.

sharon.wootton@thermofisher.com (W. Sharon).

(PGM[™] instrument) by Thermo Fisher Scientific allows MPS to occur in a non-fluorescence approach, providing users with a very flexible, rapid and scalable tool for genomic investigation. Results can be obtained in less than 2 days and experiments can be designed quite easily by adapting the number of samples and the number of target regions of interest to the microchip size. Reliability of this method has been proved by comparative analysis versus other MPS approaches [12–15] and it is now an accepted technology for the analysis of genetic disorders, pathogen and diseases diagnosis [16,17] and cancer profiling [18,19].

Increasing demand for analysis of severely degraded and very low template DNA samples [20-22], (LtDNA) is prompting forensic scientists to make critical decisions on the optimal sample processing workflow in order to gather the highest level of information per sample. Many guidelines have been proposed in the recent years on the best way to analyze LtDNA [20,23,24], suggesting assembly of a consensus profile by putting together results from different STR amplification replicates [25,26]. Stochastic effects such as allele drop-in/out should be considered when approaching the analysis of LtDNA samples [27]. In most cases, the limited amount of sample availability makes it impossible to run multiple different PCR reactions. In these cases the forensic analysts have to decide whether to process the sample by STR or SNP analysis. In most cases, this decision is taken on the basis of the quantification data or the availability of specific instrumentation in the laboratory. Recently, the Quantifiler[®] Trio DNA Quantifiction Kit has been released by Thermo Fisher Scientific. By using this kit, it is now possible to not only quantitate the DNA at a sub-picograms level but also to predict the level of degradation of the sample by the calculation of a Degradation Index (DI) [28]. When the DI detects a severe level of degradation, this could be a key predictor that partial noninformative profiles would be obtained with STR kits [36]. In these cases SNP analysis may provide additional information to identify an individual.

In our study we compared STR fragments obtained with the NGM SElectTM Kit and SNPs using a prototype version of the Ion AmpliSeq[™] Identity panel (v2.3) with MPS on LtDNA. This SNP panel is composed of a total of 119 SNPs that include 90 autosomal and 29 Y-chromosome SNPs. Among the 90 autosomal markers, 86 are unlinked comprising a subset of Kenneth Kidd's 45 IISNPsplex and the ii52 SNPforID52-plex [7–9]. We first ran a sensitivity study from 1 ng to 5 pg with 007 control-DNA and then developed a controlled thermal degradation protocol to generate fragmented DNA (from 007 DNA and blood sample) in a fast and easy way. We modified published protocols [29,2] and adapted to our degradation DNA target in order to obtain a range of degradation levels, including the amount at which STR analysis does not give informative results. To test sensitivity, several replicates of the dilution series were analyzed for the rate of allele drop-out/in out of 2261 independent genotyping events. A total of 1900 independent genotypes were analyzed in the 007 DNA and blood degradation study. Allele balance and consistency in the obtained genotypes were evaluated. The outcome of the sensitivity and degradation study assisted in defining general indications for analyzing LtDNA. We applied these last indications to the analysis

Table 1

Experiment summary and quantification.

Sample type	Sample	Sample description	SA quantity ^a (pg/	DI ^b	ODI ^b	Tot. input	Mean read length	Mean depth on target read/SNP
	ID		μl)			(pg) ^c	(bp)	
007	1 ng	Control male DNA from cell line	174	0.7	0.8	1044	102	739
007	250 pg	Control male DNA from cell line	43	0.7	0.8	258	102	806
007	125 pg	Control male DNA from cell line	19	1.1	0.9	114	101	571
007	62 pg	Control male DNA from cell line	9.6	0.7	0.8	57.4	101	640
007	31 pg	Control male DNA from cell line	5.3	0.7	0.9	31.8	100	614
007	15 pg	Control male DNA from cell line	3.2	1.2	0.6	19.1	104	795
007	5 pg	Control male DNA from cell line	0.7	0.5	0.6	4.08	102	658
007	1H	Control male DNA from cell line	648	2	1.9	200	90	718
007	2H	Control male DNA from cell line	340	7	4.4	200	82	589
007	3H	Control male DNA from cell line	74	386	24.4	222	69	438
007	4H	Control male DNA from cell line	40	497	55.6	238	65	279
007	5H	Control male DNA from cell line	22	571	85.1	132	62	333
Blood	0H	Whole male blood sample	563	0.8	1.0	100	98	479
Blood	2H	Whole male blood sample	378	2.7	3.1	100	80	533
Blood	3H	Whole male blood sample	211	4.9	3.2	100	82	490
Blood	4H	Whole male blood sample	74	17	4.8	74	77	564
Blood	5H	Whole male blood sample	8	74	6.8	48	75	385
Bone	Bone 1	Bone powder from real casework	2.9	2	1.7	27.7	112	89
Bone	Bones 1– 2	Bone powder from real casework	4.3	1	1	36.9	114	108
Bone	155	Bone powder, 70 years old bone	3.3	40	-	20	88	0
Bone	155-1	Bone powder, 70 years old bone	3.1	4	-	18.6	85	148
Bone	98	Bone powder, 70 years old bone	6.3	79	-	37.9	129	26
Bone	98-1	Bone powder, 70 years old bone	1.6	2.6	-	9.8	131	52
Bone	264	Bone powder, 70 years old bone	3.5	4.9	-	21.4	81	0
Bone	264-1	Bone powder, 70 years old bone	0.7	4.9	-	4.02	69	15
Blood	Drop-1	Dried blood samples from casework	5.6	13	-	33.5	76	482
Blood	Drop-2	Dried blood samples from casework	0.3	NA	-	1.8	73	24
Tooth	Tooth	Tooth sample from a remain	713	1.4	0.9	200	96	346

^a SA Quantity refers to the average quantifications obtained by the Quantifiler[®] Trio Kit small amplicon replicate signals.

^b Degradation index (DI) was calculated as the ratio between the quantifications obtained with the Quantifiler⁴⁸ Trio Kit by the small and large amplicons respectively. Observed degradation index (ODI) was calculated as the ratio of the average coverage from the 10 smallest to the 10 largest amplicons in the SNP panel.

^c 6 μl of total DNA input were used for the library multiplex PCR.

Download English Version:

https://daneshyari.com/en/article/98702

Download Persian Version:

https://daneshyari.com/article/98702

Daneshyari.com