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Purpose: A controlled observer study was conducted to compare a method for automatic image segmentation
with conventional user-guided segmentation of right and left kidneys from planning computerized tomographic
(CT) images.
Methods and Materials: Deformable shape models called m-reps were used to automatically segment right and
left kidneys from 12 target CT images, and the results were compared with careful manual segmentations
performed by two human experts. M-rep models were trained based on manual segmentations from a collection
of images that did not include the targets. Segmentation using m-reps began with interactive initialization to
position the kidney model over the target kidney in the image data. Fully automatic segmentation proceeded
through two stages at successively smaller spatial scales. At the first stage, a global similarity transformation of
the kidney model was computed to position the model closer to the target kidney. The similarity transformation
was followed by large-scale deformations based on principal geodesic analysis (PGA). During the second stage,
the medial atoms comprising the m-rep model were deformed one by one. This procedure was iterated until no
changes were observed. The transformations and deformations at both stages were driven by optimizing an
objective function with two terms. One term penalized the currently deformed m-rep by an amount proportional
to its deviation from the mean m-rep derived from PGA of the training segmentations. The second term
computed a model-to-image match term based on the goodness of match of the trained intensity template for the
currently deformed m-rep with the corresponding intensity data in the target image. Human and m-rep
segmentations were compared using quantitative metrics provided in a toolset called Valmet. Metrics reported
in this article include (1) percent volume overlap; (2) mean surface distance between two segmentations; and (3)
maximum surface separation (Hausdorff distance).
Results: Averaged over all kidneys the mean surface separation was 0.12 cm, the mean Hausdorff distance was
0.99 cm, and the mean volume overlap for human segmentations was 88.8%. Between human and m-rep
segmentations the mean surface separation was 0.18–0.19 cm, the mean Hausdorff distance was 1.14–1.25 cm,
and the mean volume overlap was 82–83%.
Conclusions: Overall in this study, the best m-rep kidney segmentations were at least as good as careful manual
slice-by-slice segmentations performed by two experienced humans, and the worst performance was no worse
than typical segmentations from our clinical setting. The mean surface separations for human–m-rep segmen-
tations were slightly larger than for human–human segmentations but still in the subvoxel range, and volume
overlap and maximum surface separation were slightly better for human–human comparisons. These results
were expected because of experimental factors that favored comparison of the human–human segmentations. In
particular, m-rep agreement with humans appears to have been limited largely by fundamental differences
between manual slice-by-slice and true three-dimensional segmentation, imaging artifacts, image voxel dimen-
sions, and the use of an m-rep model that produced a smooth surface across the renal pelvis. © 2005 Elsevier
Inc.
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INTRODUCTION

Three-dimensional radiation treatment planning (3D RTP)
systems require a user-created model of the patient to lo-
calize and display objects of interest, position the isocenters
of the treatment beams, shape the radiation beams to con-

form to the outline of the target volume and avoid nearby
sensitive tissues, incorporate tissue inhomogeneities into
dose calculations, and compute volume-weighted metrics
such as dose–volume histograms (DVHs) that are used for
comparing competing treatment plans. The anatomic struc-
tures and tumor-related objects comprising the patient
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model are defined by segmenting one or more volume
images, usually computerized tomographic (CT) and mag-
netic resonance images. Due to the large number of depart-
ments practicing 3D RTP and the large number of patients
undergoing 3D RTP every day, segmentation of medical
images is a commonly performed clinical task that affects
critical treatment decisions. It is likely that segmentation is
performed more often as a clinical procedure in radiation
oncology than for all the other medical specialties com-
bined. Unfortunately current segmentation practice is inher-
ently inefficient and expensive. Most methods in routine
clinical practice are user-guided, slice-by-slice contouring
tools that require well-trained users to achieve acceptable
results for 3D RTP. Other flaws of current segmentation
methods that tend toward suboptimal treatment planning
include intra- and interuser variabilities (1–9), the lack of
practical approaches that fully consider all three spatial
dimensions, and the inability to deal with ambiguous sur-
face localization.

The development of automatic three-dimensional (3D)
segmentation methods is motivated by several consider-
ations, including economic pressure to improve efficiency
and contain costs and the clinical need to improve accuracy
and reproducibility to steer user-directed planning decisions
and inverse treatment planning algorithms consistently in
the right direction. Deformable shape models are a general
class that is showing great promise for automatic segmen-
tation of normal anatomic structures. Kass et al. (10) first
described a straightforward method based on deformable
two-dimensional contours popularly known as snakes. A
useful survey of snakes is found in the study by McInerney
and Terzopoulos (11). Collections of articles on early de-
formable models can be found in the book by ter Haar
Romeny (12) and in proceedings of conferences such as
CVRMed ’95 (13) and CVRMed-MRCAS ’97 (14); the
topic is also investigated in studies by Montagnat and
Delingette (15), McInerney and Terzopoulos (11, 16), Jones
and Metaxas (17), and Vehkomäki et al. (18). However, in
order for classic snake-like deformable contours to be ro-
bust and reproducible in the clinical setting, the initial
guesses for shape and position of the target object essen-
tially must be equivalent hand-drawn contours. This re-
quirement effectively precludes the possibility of replacing
hand contouring with snakes. Statistically grounded de-
formable shape models that can be trained to capture a
priori information about the probability distributions of
target object shapes overcome many problems presented by
classic snake-like methods. A special issue of the Institute
of Electrical and Electronics Engineers’ (IEEE) journal
Transactions on Medical Imaging (19) on model-based
analysis of medical images has a collection of articles on a
number of these methods.

The more sophisticated deformable shape methods use
explicit geometric models to represent object shape. Such
models represent a priori information that can be used in a
statistical framework for matching the model against a
target image. For objects with predictable shapes such as

normal anatomic structures, the model can be thought of as
representing a shape that is typical for the target object. For
example, an m-rep is a model of the mean shape that can
deform, within the limits imposed by the probability distri-
bution on target shapes, to match the shape of a correspond-
ing object in a target image. The statistical framework for
driving the deformation is reviewed briefly below and dis-
cussed in greater detail by Pizer et al. (20, 21), Fletcher et al.
(22), and Lu et al. (23).

In this article, we discuss the results of an observer study
comparing automatic and human segmentations of left and
right kidneys from planning CT images. The objective was
to compare m-reps against experienced humans to judge
whether m-reps produce reasonable segmentations. To ac-
complish this, we conducted a biostatistically rigorous com-
parison of m-reps against two exemplars from the popula-
tion of experienced humans. Kidneys were selected for this
study because they are relatively unchallenging for trained
humans to contour and thus an acceptable reference stan-
dard is easily defined, and because of their importance for
treatment planning. They also are a challenging initial ob-
jective for automatic methods because they are located in a
crowded soft-tissue environment with bony structures
nearby. Segmentation was performed in this study using
medial models called m-reps (20, 21). M-reps have a num-
ber of strengths that are well matched to the task of seg-
menting normal structures from medical images for radio-
therapy treatment planning (24).

METHODS AND MATERIALS

M-reps
Detailed discussions of the structure, building, training, and

deformation of m-reps can be found in articles by Pizer et al. (20,
21). For completeness and continuity, brief discussions relevant to
the kidney m-reps used in this study are presented below.

The simplest 3D shape is a single figure without subfigures, i.e.,
indentations or protrusions. For this study, the combined kidney
parenchyma and renal pelvis were treated as a single figure. Such
an object is described using an m-rep model comprising a grid of
atoms that implies a 3D surface, as shown in Fig. 1. The centers of

Fig. 1. Frame 1: Medial atom with two equal-length spokes that
touch points on surface patches on opposite sides of the object and
thus define object width at the location of the atom. Frame 2: A
medial sheet of a kidney as viewed from an oblique angle. The
sheet is represented as a 5 � 3 grid of medial atoms with only the
atom hubs displayed. Frame 3: Medial grid with spokes displayed.
Internal atoms have two spokes (magenta and cyan) and atoms on
the edge of the grid have a third spoke (red) that defines the radius
of curvature of the crest of the object. Frame 4: Wire-frame
rendering of the surface implied by the medial sheet.
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