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A B S T R A C T

Objective: In the absence of head-to-head randomized trials, indirect
comparisons of treatments across separate trials can be performed.
However, these analyses may be biased by cross-trial differences in
patient populations, sensitivity to modeling assumptions, and differ-
ences in the definitions of outcome measures. The objective of this
study was to demonstrate how incorporating individual patient data
(IPD) from trials of one treatment into indirect comparisons can ad-
dress several limitations that arise in analyses based only on aggregate
data. Methods: Matching-adjusted indirect comparisons (MAICs) use
IPD from trials of one treatment to match baseline summary statistics
reported from trials of another treatment. After matching, by using an
approach similar to propensity score weighting, treatment outcomes
are compared across balanced trial populations. This method is illus-
trated by reviewing published MAICs in different therapeutic areas. A
novel analysis in attention deficit/hyperactivity disorder further dem-
onstrates the applicability of the method. The strengths and limita-
tions of MAICs are discussed in comparison to those of indirect com-
parisons that use only published aggregate data. Results: Example

applications were selected to illustrate how indirect comparisons
based only on aggregate data can be limited by cross-trial differ-
ences in patient populations, differences in the definitions of out-
come measures, and sensitivity to modeling assumptions. The use
of IPD and MAIC is shown to address these limitations in the selected
examples by reducing or removing the observed cross-trial differ-
ences. An important assumption of MAIC, as in any comparison of
nonrandomized treatment groups, is that there are no unobserved
cross-trial differences that could confound the comparison of
outcomes. Conclusions: Indirect treatment comparisons can be lim-
ited by cross-trial differences. By combining IPD with published aggre-
gate data, MAIC can reduce observed cross-trial differences and pro-
vide decision makers with timely comparative evidence.
Keywords: comparative effectiveness, individual patient data, match-
ing-adjusted indirect comparison.

Copyright © 2012, International Society for Pharmacoeconomics and
Outcomes Research (ISPOR). Published by Elsevier Inc.

Introduction

Health care decision makers face significant gaps between their
needs for comparative effectiveness research (CER) and the limited
availability of comparative data. The gap is particularly pronounced
for new treatments, which are often integrated into treatment strat-
egies and formulary policies without the benefits of randomized tri-
als against all clinically or economically relevant alternatives. After
the new treatment becomes available, observational studies based
on registries or real-world data, or pragmatic trials, may be initiated.
Such studies, however, will not provide reliable comparative evi-
dence until sufficient outcomes data have accumulated. This delay
in comparative evidence for new treatments reduces the value of
CER for improving the decisions of physicians, payers, and patients.

An increasingly used approach for timely CER is the compari-
son of treatment outcomes across separate randomized trials. De-

tailed reviews of methodologies for such indirect comparisons
have been published [1,2], and guidelines have been developed for
researchers and decision makers [3–10]. By combining trials with
overlapping comparator groups, multiple direct and indirect com-
parisons can be combined into a network meta-analysis that sum-
marizes comparative evidence for all treatments in a therapeutic
area. Although based on randomized trials, indirect comparisons
and network meta-analyses involve comparisons of nonrandom-
ized treatment groups and are akin to observational studies and
subject to important limitations.

In particular, cross-trial differences in patients’ baseline
characteristics or differences in outcome definitions can bias
indirect comparisons [1,2,11]. Although meta-regressions can
adjust for cross-trial differences in baseline characteristics at
an aggregate level, they cannot adjust for large numbers of
baseline differences and may be subject to ecological bias
[12,13]. A key assumption of indirect comparisons and network
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meta-analyses is that cross-trial differences can be mitigated by
measuring treatment effects relative to a common comparator
(e.g., placebo). However, different modeling assumptions, em-
bodied in the choice of a relative effect measure (e.g., relative
risk, odds ratio, or risk difference), can lead to conflicting con-
clusions about comparative effectiveness. These limitations are
difficult to address by using only published aggregate data, es-
pecially when only small numbers of trials are available.

In this article, we show that the use of individual patient data
(IPD) from clinical trials for one treatment—but not necessarily all
treatments—can address these limitations and that useful IPD are
more readily available than currently appreciated. If IPD were
available from all trials of interest, potential biases stemming from
cross-trial differences could be mitigated by regression adjustment
[14–18] or propensity scores [19,20]. Although IPD are seldom avail-
able for all trials, researchers engaged in CER can often access IPD for
some trials. In particular, when CER is conducted or funded by a
clinical trial sponsor, IPD could be available from the sponsor’s trials.
A recently developed statistical method—matching-adjusted indirect
comparison (MAIC)—can combine IPD for some treatments with pub-
lished summary data for comparator treatments. Through exam-
ples, we show how the incorporation of IPD into indirect compari-
sons via MAIC can 1) adjust for cross-trial differences in baseline
characteristics, 2) reduce sensitivity to effect measures, 3) resolve
differences in study outcome definitions, and 4) allow the compari-
son of clinically relevant dosages.

Methods

The MAIC approach has been published previously and is briefly
reviewed below [21]. The approach can be applied in three steps.

Clinical trial selection

As in any data synthesis, a systematic review should be con-
ducted to identify clinical trials for the treatments to be com-
pared. Characteristics of the selected trials should then be care-
fully compared, including the study design (e.g., randomized or
open-label trial), inclusion/exclusion criteria, baseline charac-
teristics, outcome assessments (e.g., definitions of outcomes,
schedule of assessments), and statistical methods (e.g., han-
dling of early dropouts, baseline adjustment). Cross-trial differences
in these features can be sources of heterogeneity in any meta-anal-
ysis. In indirect comparisons and network meta-analyses, these dif-
ferences can also be sources of bias. The availability of IPD, which can
provide opportunities to remove or reduce observed cross-trial dif-
ferences, should be assessed for each trial.

Identification of outcome measures

A meaningful cross-trial comparison should focus on comparably
defined outcome measures that are available in the included trials.
The precise definition of the study outcomes, the schedule of as-
sessments, the clinical relevance of different dosages, and the sta-
tistical methods used to summarize effects should all be consid-
ered. IPD should be reanalyzed to match the outcome definitions
used in the published trial data as much as possible before making
an indirect comparison. If outcome definitions cannot be matched
exactly, sensitivity analyses should be considered.

Matching trial populations

In trials with IPD, patients who could not have enrolled in the
published comparator trials (e.g., because of stricter inclusion/
exclusion criteria) should be excluded from the indirect com-
parison analysis. Even after matching inclusion/exclusion cri-
teria across trials, important cross-trial differences in patients’
baseline characteristics can remain. To adjust for these differ-

ences by using MAIC, patients in trials with IPD are weighted
such that their weighted mean baseline characteristics match
those reported for the trials without IPD. This approach is a
form of propensity score weighting in which patients in one
treatment group (in this case the trial with IPD) are weighted by
their inverse odds of being in that group versus the other treat-
ment group (in this case the trial with only published aggregate
data). The propensity score model can be estimated by using the
generalized method of moments based on the aggregate data
and IPD. Other baseline summary statistics such as medians
and standard deviations can also be matched when available.
Outcomes from common comparator arms (e.g., placebo) can be
used to validate the matching process. After matching, contin-
uous, binary, or time-to-event outcomes can be compared
across balanced trial populations by using weighted statistical
tests that incorporate the same weights developed in the
matching process (e.g., using weighted t tests, weighted �2 tests,
or Kaplan-Meier tests). Weighted statistical models (e.g., anal-
ysis of covariance) can also be used to ensure that similar meth-
ods are applied to all trials. Limitations of the MAIC approach
are described in the Discussion section.

Example applications

To illustrate how the use of IPD with MAIC can address the limi-
tations that arise for indirect comparisons without IPD, four ex-
ample applications are presented.

Indirect comparisons with IPD can resolve significant differences
in key baseline characteristics: vildagliptin versus sitagliptin in
Japanese patients with type II diabetes mellitus [22]
Vildagliptin and sitagliptin are two treatments for type II diabe-
tes that were recently approved for use in Japan. Both have been
associated with better glycemic control compared with placebo
or voglibose in randomized trials [23–29]. A systematic litera-
ture review of clinical trials in Japanese patients identified two
vildagliptin [25,26] and two sitagliptin [23,27] trials. The com-
mon comparators included placebo and voglibose. An indirect
comparison of aggregate data suggested that vildagliptin was
associated with a significantly greater absolute decrease in
mean % glycosylated hemoglobin A1c (Hb A1c) versus sitagliptin
(difference � �0.17; 95% confidence interval [CI]: �0.33 to �0.01;
P � 0.024) in the voglibose-controlled trials but that the differ-
ence was not statistically significant in the placebo-controlled
trials (difference � �0.20; 95% CI: �0.45 to 0.05; P � 0.133). Sig-
nificant cross-trial baseline differences in mean Hb A1c, how-
ever, call into question the validity of the comparison based
only on published aggregate data. Patients in the vildagliptin
trials had significantly lower mean Hb A1c at baseline than did
patients in the sitagliptin trials. Higher baseline Hb A1c has been
associated with greater postbaseline Hb A1c reduction in meta-
analyses of oral antihyperglycemics [30]. Although meta-re-
gression can adjust for baseline differences in aggregate trial
data, it can be unreliable with data from only four trials.

By using IPD from the vildagliptin trials, patients were selected
on the basis of inclusion/exclusion criteria specified in the sita-
gliptin trials and were reweighted to match exactly the baseline
characteristics reported for the sitagliptin trials, including the
baseline mean Hb A1c as well as age, sex, body mass index, fasting
plasma glucose (FPG), and diabetes duration. After matching,
vildagliptin was associated with a significantly greater decrease in
Hb A1c compared with sitagliptin (Table 1). Compared with the
indirect comparison based on only aggregate data, the treatment
difference between vildagliptin and sitagliptin increased after
MAIC, consistent with the expected effect of adjusting for baseline
Hb A1c differences. The use of IPD and MAIC in this example pro-
vided a more reliable comparison than did aggregate data alone,
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