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Regular dynamics in a delayed network of two neurons with
all-or-none activation functions
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Abstract

We consider a delayed network of two neurons with both self-feedback and interaction described by an all-or-none threshold
function. The model describes a combination of analog and digital signal processing in the network and takes the form of a system
of delay differential equations with discontinuous nonlinearity. We show that the dynamics of the network can be understood in
terms of the iteration of a one-dimensional map, and we obtain simple criteria for the convergence of solutions, the existence,
multiplicity and attractivity of periodic solutions.
© 2005 Elsevier B.V. All rights reserved.

PACS:02.30.ks; 87.10.+e

Keywords:Neural networks; Delayed feedback; One-dimensional map; Convergence; Periodic solutions

1. Introduction

We consider the following model for an artificial network of two neurons{
ẋ = −µx + a11f (x(t − τ)) + a12f (y(t − τ)),

ẏ = −µy + a21f (x(t − τ)) + a22f (y(t − τ)),
(1)

whereẋ = dx/dt, x(t) andy(t) denote the state variables associated with the neurons,µ > 0 is the interact decay
rate,τ > 0 is the synaptic transmission delay,a11, a12, a21 anda22 are the synaptic weights, andf : R → R is the
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activation function. Such a model describes the evolution of the so-called Hopfield net[6,7,15]where each neuron
is represented by a linear circuit consisting of a resistor and a capacitor, and where each neuron is connected to
another via the nonlinear activation functionf multiplied by the synaptic weightsaij(i �= j). We also assume that
each neuron has self-feedback and signal transmission is delayed due to the finite switching speed of neurons.

We focus here on the computational performance described by the asymptotical behaviors of model(1), where
the signal transmission is of digital nature: a neuron is either fully active or completely inactive. Namely, the signal
transmission is of McCulloch–Pitts type[8–10,16,17,21]and we have

f (ξ) =
{

−δ, if ξ > 0,

δ, if ξ ≤ 0,
(2)

whereδ > 0 is a given constant. Therefore, the model describes a combination of analog and digital signal processing.
Differential equations of this type usually occur in control systems, e.g., in heating systems and the pupil light reflex,
if the controlling function is determined by a constant delayτ > 0 and the switch recognizes only the positions “on”
[f (ξ) = δ] and “off” [ f (ξ) = −δ]. Because each variable changes continuously but depends on the signs of other
variables, such a system retains a continuous-time framework and can be proposed as a useful simplification to
gain analytical insight (see, for example[4]). In addition, a rather confusing variety of names have been applied to
this system, such as “Glass networks”(see, for example[4,5]), “piecewise-linear equations”, “switching networks”,
“nonlinear chemical reaction networks”, “gene networks”, “Boolean kinetic equations” and variants of these. Here
we avoid this confusion by calling it “McCulloch–Pitts networks”. By the discontinuous nonlinearity, the differential
equation allows detailed analysis. It turns out that there is a rich solution structure. To simplify our presentation, we
first rescale the variables by

t∗ = µt, τ∗ = µτ, x∗(t∗) = µ

δ
x(t), y∗(t∗) = µ

δ
y(t), f ∗(ξ) = 1

δ
f

(
δ

µ
ξ

)
,

and then drop the∗ to get{
ẋ = −x + a11f (x(t − τ)) + a12f (y(t − τ)),

ẏ = −y + a21f (x(t − τ)) + a22f (y(t − τ))
(3)

with

f (ξ) =
{

−1, if ξ > 0,

1, if ξ ≤ 0.
(4)

It is natural to have the phase spaceX = C([−τ,0]; R2) as the Banach space of continuous mappings from
[−τ,0] to R

2 equipped with the sup-norm, see[13]. Note that for each given initial valueΦ = (ϕ,ψ)T ∈ X,
one can solve system(3) on intervals [0, τ], [τ,2τ], . . . successively to obtain a unique mapping (xΦ, yΦ)T :
[−τ,∞) → R

2 such thatxΦ |[−τ,0]= ϕ,yΦ |[−τ,0]= ψ, (xΦ, yΦ)T is continuous for allt ≥ 0, piecewise differentiable
and satisfies(3) for t > 0. This gives a unique solution of(3) defined for allt ≥ −τ. In applications, a network
usually starts from a constant (or nearly constant) state. Therefore, we shall concentrate on the case where each
component ofΦ has no sign change and has at most finitely many zeros on [−τ,0]. More precisely, we consider
Φ ∈ X+,+ ⋃

X+,− ⋃
X−,+ ⋃

X−,− = X0, where

C± = {±ϕ; ϕ : [−τ,0] → [0,∞) is continuous and has only finitely many zeros on [−τ,0] }
and

X±,± = {Φ ∈ X; Φ = (ϕ,ψ)T, ϕ ∈ C± andψ ∈ C±}.
Clearly, all constant initial values (except for 0) are contained inX0.
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