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Abstract

Numerical evidence is presented for the existence of stable heteroclinic cycles in large parameter regions of the one-dimensional
complex Ginzburg–Landau equation (CGL) on the unit, spatially periodic domain. These cycles connect different spatially and
temporally inhomogeneous time-periodic solutions ast → ±∞. A careful analysis of the connections is made using a projection
onto five complex Fourier modes. It is shown first that the time-periodic solutions can be treated as (relative) equilibria after
consideration of the symmetries of the CGL. Second, the cycles are shown to be robust since the individual heteroclinic
connections exist in invariant subspaces. Thirdly, after constructing appropriate Poincaré maps around the cycle, a criteria for
temporal stability is established, which is shown numerically to hold in specific parameter regions where the cycles are found to
be of Shil’nikov type. This criterion is also applied to a much higher-mode Fourier truncation where similar results are found.
In regions where instability of the cycles occurs, either Shil’nikov–Hopf or blow-out bifurcations are observed, with numerical
evidence of competing attractors. Implications for observed spatio-temporal intermittency in situations modelled by the CGL
are discussed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Heteroclinic cycles have been observed and analysed in a variety of PDEs including the Kuramoto–Sivashinsky
equation and Navier–Stokes equations, see[17]. Such cycles are characterised by metastable, recurrent behaviour,
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made up of long periods of quasi-static regimes with sudden bursts of aperiodic, spatio-temporal evolution, ‘relaxing’
after a while to new quasi-static states. Systems possessing symmetries are often found to admitrobustheteroclinic
cycles that persist under perturbations that respect the symmetry of the system. For example, codimension-two
mode interactions in systems with O(2) symmetry, are known to provide a rich variety of robust heteroclinic cycles
between equilibria and/or periodic solutions, see[1,28,7,23].

The one-dimensional complex Ginzburg–Landau (CGL) equation on a periodic domain is given by

ut = (1 + iν)uxx + Ru − (1 + iµ)|u|2u, (1)

whereu ∈ C, ν, µ,R ∈ R, x ∈ [0,1] periodic. It can be shown to be the generic amplitude equation on long space
and time scales close to the critical Reynolds number for spatio-temporal pattern formation in fluid dynamics, see
Newell et al.[31]. More generally, the CGL can be thought of as a normal form for a Hopf bifurcation in a variety of
spatially extended systems. The CGL has been used to study many practical problems such as chemical turbulence,
Poiseuille flow, Taylor–Couette flow, and Rayleigh–Bénard convection; see Mielke[25] for a review.

Numerous analytical and numerical investigations of the CGL with periodic boundary conditions have been
carried out. Analytical results have concentrated on bifurcations from the trivial solution where new solutions can
be found from reductions of the CGL to an ODE, see[12]. A closed form solution to the CGL for arbitrary initial
data is not known and so numerical investigations provide the only way to fully explore its dynamics away from
analytically known special solutions. There have been a few bifurcation sequences mapped out forν = −µ,R =
0, . . . ,100 ([11,16,26,21]). However, this paper is concerned with exploration away from the lineν = −µ, where
we shall find wide parameter regions where robust heteroclinic cycles occur.

Rodriguez and Schell[33], analysed a two-mode Fourier truncation in an invariant subspace of the CGL but
only found structurally unstable heteroclinic cycles. The heteroclinic cycles that we observe in the full PDE are
structurally stable (i.e., they persist under perturbations that respect the symmetry of the CGL) and are not described
by the truncation of[33]. We find that the minimal truncation necessary to observe these cycles is five complex
Fourier modes, in which setting we carry out a Shil’nikov-type analysis which shows why the cycles should be
robust.

In this paper we will describe and explain the existence and stability of robust heteroclinic cycles in the one-
dimensional, complex Ginzburg–Landau equation posed on the spatially periodic domain. Our approach to the
problem is similar to that of Rucklidge and Matthews[34] who analysed two-dimensional PDEs governing magne-
toconvection. We tackle these heteroclinic cycles in an intuitive manner based on observations made in the full PDE
rather than looking a priori at heavy restrictions/truncations and seeing where they apply to the CGL. A variety of
numerical and analytical techniques are used to gain insight into the dynamics associated with these heteroclinic
cycles. We start with a minimal Fourier truncation which possesses the same symmetries as the heteroclinic cycles.
Then we use Poincaré return map analysis within this truncated system to find an analytical criterion for asymptotic
stability of the heteroclinic cycles and predict analytically what happens when the heteroclinic cycle loses stability.
Numerical continuation is then used to explore the heteroclinic cycles observed in the Fourier truncation. We also
find a variety of Shil’nikov-type heteroclinic cycles including saddle-focus and bi-focal cycles as well as heteroclinic
cycles between limit cycles. We also observe other instabilities due to perturbations outside the invariant subspaces
which the heteroclinic cycles evolve in. In particular, we find something akin to a blow-out bifurcation[4] for the
limit-cycle to limit-cycle heteroclinic cycle.

Using the results developed for the low-dimensional truncation, we prove a stability criterion for the heteroclinic
cycles in the full PDE which we then use with numerical continuation to explore the existence and stability of the
heteroclinic cycles in a higher-dimensional truncation.

The paper is outlined as follows. In Section2 we set out the problem and discuss some of the properties of
the observed heteroclinic cycles. This leads us to a minimum Fourier truncation of the CGL that still possesses
heteroclinic cycles. A discussion of the numerical techniques is given in Section2.3. In Section3 we explore the
heteroclinic cycles in the minimal truncation and analyse their persistence and existence in Section3.1. An analytical
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