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A B S T R A C T

The quantitative assessment of the potential influence of unmeasured
confounders in the analysis of observational data is rare, despite reliance
on the ‘‘no unmeasured confounders’’ assumption. In a recent compar-
ison of costs of care between two treatments for type 2 diabetes using
a health care claims database, propensity score matching was imple-
mented to adjust for selection bias though it was noted that information
on baseline glycemic control was not available for the propensity model.
Using data from a linked laboratory file, data on this potential ‘‘unmea-
sured confounder’’ were obtained for a small subset of the original
sample. By using this information, we demonstrate how Bayesian
modeling, propensity score calibration, and multiple imputation can
utilize this additional information to perform sensitivity analyses to
quantitatively assess the potential impact of unmeasured confounding.
Bayesian regression models were developed to utilize the internal
validation data as informative prior distributions for all parameters,

retaining information on the correlation between the confounder and
other covariates. While assumptions supporting the use of propensity
score calibration were not met in this sample, the use of Bayesian
modeling and multiple imputation provided consistent results, suggest-
ing that the lack of data on the unmeasured confounder did not have a
strong impact on the original analysis, due to the lack of strong
correlation between the confounder and the cost outcome variable.
Bayesian modeling with informative priors and multiple imputation
may be useful tools for unmeasured confounding sensitivity analysis in
these situations. Further research to understand the operating character-
istics of these methods in a variety of situations, however, remains.
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Introduction

The use of retrospective observational research as a tool for
medical decision making, particularly with data from health care
claims databases and electronic medical records, has been grow-
ing in recent years. With large and heterogeneous populations of
patients, such observational databases are a rich source of usual
care data, which can potentially address a variety of medical
questions [1,2]. The use of such data for comparative effectiveness,
however, is challenged by selection bias and potential for unmea-
sured confounding [3–5]. Patients are not randomized to treat-
ments and thus comparisons between treatment groups are
subject to bias due to the many factors that influence treatment
choices in usual care practice. Statistical adjustment for measured
confounders is possible, such as through propensity score adjust-
ment. The validity of such methods, however, relies on the
assumption that there are no unmeasured confounders. That is,
there are no factors related to both treatment and outcome that
are not collected and appropriately utilized in the analysis. As this
assumption cannot be verified, observational data have lower
internal validity and are lower on the hierarchy of evidence
relative to randomized clinical trials [6–9].

In prospective observational studies, a researcher can specify the
collection of data on known confounders; however, this opportunity
does not exist in retrospective database research. While researchers
look for proxies for such known confounders within the existing
database, the degree to which this addresses the confounding is
unknown. In addition, unknown confounders may exist and without
randomization such variables will cause the standard analyses to be
biased. To ensure the robustness of the observational research
findings, it is important to conduct sensitivity analyses to assess
the potential impact of unmeasured confounding [4,9–10].

While many researchers mention the limitations on infer-
ences from their work due to unmeasured confounding, few
directly assess the potential impact in a quantitative fashion
[10,11]. Even when no or limited additional data on the unmea-
sured confounders are available, there are several methods that
can be utilized to assess sensitivity for unmeasured confounding,
including the Rule Out [10] and Bayesian modeling with non-
informative priors [12]. The Rule Out approach uses a simple
model to quantify the level of unmeasured confounding neces-
sary to eliminate the observed treatment difference (e.g., moves
the risk ratio to 1). Researchers can then assess whether such
a level of confounding is plausible for their scenario.
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Data on a known unmeasured confounder may be available
external to the study (‘‘external information’’), such as in a
related study or survey data [13–15]. Bayesian approaches
[11,12,16] are a natural fit as the uncertainty in the ‘‘external
information’’ can be modeled as part of an informative prior
distribution. The use of external data, however, requires trans-
portability between populations and typically faces difficulty
accounting for the correlation between unmeasured confounders
and measured covariates already in the original analysis. The
impact of an unmeasured confounder can clearly depend on the
extent to which a missing variable is related to other variables
in the analysis. This problem can be addressed directly when
‘‘internal information’’ is available. For example, chart review
data could be obtained on a subsample of the patients in
administrative claims database analysis and could be used as
‘‘internal information.’’

Methods utilizing internal data include Bayesian modeling,
propensity score calibration (PSC) [17], and multiple imputation
[18,19]. Bayesian approaches can utilize the internal data in their
prior structures. PSC is based on measurement error methodol-
ogy and accounts for the correlation between the confounder and
other variables already in the full model. The method, however,
depends on the assumption that the association between the
unmeasured confounder and outcome is in the same direction as
the association between the measured confounders and the
outcome. This clearly will not be valid in all scenarios, and the
method performs poorly when this assumption is violated [20].

When some internal data on the ‘‘unmeasured’’ confounder
exist, the issue can be viewed as a missing data problem, and
methods such as multiple imputation can be utilized. Incorporating
the outcome variable in the imputer’s model allows for full flexibility
in regard to the relationship of the unmeasured confounder with the
outcome variable—a relationship that is restricted in the PSC
approach. The properties of such multiple imputation approaches
when the majority of the data is missing, as in ‘‘unmeasured’’
confounding scenarios, however, are not well known. This multiple
imputation approach also falls within the general probabilistic
resampling framework discussed by Gustafson and McCandless [11].

A recent study [21] compared health care costs for patients
initiating exenatide (referred to as Treatment 1 throughout the
remainder of this article) versus insulin glargine (Treatment 2).
This was a retrospective claims database study, and information
on some potential confounders, such as the level of glycemic
control (measured by glycoslylated hemoglobin [Hb], or Hb A1c)
was minimal. Indeed, Hb A1c values were recorded only for 25% of
the patients during the preinitiation period, and so there was no
adjustment for glycemic control in the primary analysis. In this
study, we performed a post-hoc analysis to demonstrate methods
for assessing the impact of the unmeasured confounding in the
case in which there is internal data—such as glycemic control in
this example. Specifically, three different methods incorporating
the internal data were assessed: 1) Bayesian modeling, 2) multiple
imputation, and 3) PSC. A Rule Out approach was also used as an
initial assessment of the robustness of the results to potential
unmeasured confounding.

Methods

Database

The objective of the original analysis was to compare the total
health care costs for type 2 diabetes patients initiating one of two
treatments with a 12-month follow-up period. The analysis was
performed by using an administrative claims database from i3
InVision. This database includes medical and prescription claims
from more than 30 million patients throughout the United States

during the study time period. See Pawaskar et al. [21] for further
details concerning the database and population for this analysis.
In brief, patients were included in this study if they received
at least one new prescription for either of the diabetic medica-
tions between April 1, 2005 (the earliest month both medications
were on the market in the United States), and June 30, 2007 (the
latest available data at the time of the original analysis), and
must have had at least one diagnosis for type 2 diabetes
identified by using International Classification of Disease, Ninth
Revision, Clinical Modification during the preindex period. The first
prescription date for study medication was identified as the
index date. The preindex period was defined as a 6-month period
prior to the index date (i.e., 6 months before the first prescription
of index medication) and the postindex period was defined as a
12-month follow-up period after the index date. The database
contained 93,345 patients initiating either treatment during the
time period, with 10,074 meeting all inclusion/exclusion criteria
(the largest exclusion of more than 41,000 patients due to a
diagnosis of type I or gestational diabetes). Of the 10,074 patients
in the analysis data set, 7,255 patients were in the Treatment 1
cohort, 2,819 in the Treatment 2 cohort, and baseline Hb A1c data
were available for only approximately 25% of these patients.

Adjustment and Outcomes Variables

Total health care cost over the 12-month follow-up period was
the primary outcome variable for the previous study and thus
is the outcome of interest for this analysis. The assessment of
cost data adds additional analytic challenges in part due to the
skewness of the data [22,23] but is an important outcome for the
health care payer. Patients were not randomly assigned to
treatment groups. Consequently, many differences between the
populations of patients prescribed each treatment in usual care
were expected and adjustment for baseline differences was
necessary. The health care claims database allowed for the
assessment of patient demographics, comorbidities, complica-
tions, resource use, and costs of care in the 6-month preinitation
period. No data on the other potential confounders such as
weight, body mass index (BMI), and duration of diabetes, how-
ever, were available. Only limited data on glycemic control,
measured by Hb A1c, were available in the subset of patients.

Statistical Methods

In the original analysis, the two treatment cohorts were matched
by using a propensity score greedy 1:1 algorithm. The differences in
total costs in the 12-month follow-up period between treatments
cohorts were estimated by using a nonparametric bootstrapping
test. The propensity model included patient demographics, general
health status (measured by Charlson comorbidity index), medical
comorbidities, diabetes-related complications, medication use
(including prior antidiabetic medications), health care resource
utilization (hospitalizations, emergency room visits, endocrinolo-
gist visits), and medical costs during the 6-month preindex period,
but not Hb A1c. Sensitivity analysis including propensity score
stratified bootstrapping [24] and generalized linear regression
models [25] was used to ensure the generalizability of results from
matched cohorts to the entire study population. This study also
performed a separate generalized linear model in the subgroup of
patients for whom a preindex Hb A1c value was available, to
estimate the mean total costs when controlling for patients’
glycemic control at the baseline.

The current analysis considered several other techniques to
assess the potential impact of the exclusion of glycemic control
information from the original analysis: 1) Bayesian modeling
with internal validation, 2) multiple imputation, and 3) PSC.
As the first step of the analysis, a Rule Out approach was included.
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