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Abstract

A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial

condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each

compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants

and the coefficients, finally the full time profiles for a specified range of time values.
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Keywords: IVIVC; Excel; Systems analysis; Pharmacokinetics; Compartmental models

1. Introduction

Continuing the discussion of IVIVC applications of

Excel in previous papers [1–3], this last communication of

the series is devoted to the analysis of linear pharmacoki-

netic systems with n compartments. The pharmacokinetic

literature, e.g. Refs. [4–9], discusses a manifold of

compartment models in terms of the defining microscopic

rate constants, the initial conditions, and the resulting

polyexponential time profiles expressed in terms of

macroscopic rate constants and corresponding coefficients.

The claimed number n of compartments in these models is

sometimes misleading, since they are defined as ‘open’, i.e.

with input from and/or output to an unspecified environ-

ment. For instance, the well-known ‘open two-compartment

model’ specifies only the distribution of a drug between

‘plasma’ and ‘tissue’. A systematic definition must

necessarily include at least one ‘elimination’ compartment;

if the drug is not administered as i.v. bolus, also an

‘administration’ compartment is required.

Papers dealing with more sophisticated pharmacoki-

netics, e.g. [10–14], prefer the definition of a system as

‘closed’, where the drug including all metabolites is present

in the system from the time of administration up to the final

excretion. Such models will have considerably more than

two compartments. Even in simple cases, explicit formulas

are rather cumbersome, in particular since numbering of

compartments and rate constants is arbitrary. The problem

increases with each compartment added to the model.

A generalized treatment of closed models with any

number of compartments is provided by the theory of linear

differential equations which, based on mathematical matrix

operations, frees the user from the task to find and remember

particular solutions. Various mathematical approaches are

found in relevant textbooks, e.g. Ref. [15] or [16].

The present paper presents an Excel solution based on the

matrix approach of Ref. [15]. For illustration and verifica-

tion it uses a simple literature case with nZ3 compartments:

plasma, tissue and elimination. Expansion to any larger

number of compartments is obvious. The documentation

IVIVC.DOC, available together with associated EXCEL

workbooks from the author upon request, provides a

worksheet COMPSYST designed for nZ5. This may be

used to augment the present model by an absorption site for
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non-bolus input to the plasma, and/or other distribution or

elimination compartments.

2. Conventional analysis (illustration example)

Following closely the presentation in chap. 14 of Welling

[4], the further discussion uses an illustration example

shown in Fig. 1, which is conventionally known as ‘open

two-compartment model’ with plasma (#1) and tissue (#2)

only. The double-bordered circle indicates that all drug is

present in #1 at time zero. If defined as closed system,

elimination is defined as a distinct compartment (#3), hence

the actual number of compartments is nZ3. Microscopic

rate constants are positive values, specified in consistent

units, e.g. [1/h]. According to matrix notation, kij denotes

transfer ‘to i from j’, which differs from pharmacokinetic

convention where it denotes transfer ‘from i to j’.

Even for this simple model, notation differs considerably

in the literature, e.g. numbering of compartments varies

with the actual context; rate constants are defined

ambiguously as kC or kK. The problem increases when

including further compartments. If input into the plasma

compartment is by an absorption step rather than i.v. bolus,

an additional input compartment (#4) has to be added to the

model (note that (#0) is not suitable as subscript for matrix

analysis). If elimination is modeled by parallel pathways,

e.g. urinary excretion and metabolism, this would require

the addition of another compartment. These modest

expansions would require new model definitions with

differing compartment numbering and a completely new

and complicated definition of formulas.

Returning to the illustration case with nZ3, two

macroscopic rate constants, usually denoted a and b, are

obtained from these conditions

ab Z k31k12 Z 0:027; a Cb Z k31 Ck12 Ck21 Z 1:35

which gives aZ1.330 and bZ0.020 as solution of the

quadratic equation

a

b
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Since all kij have positive values by definition, also a and

b are positive numbers, with the property that aOb, i.e a is

the faster of both.

Time profiles in the relevant compartments (plasma,

tissue, elimination) are described by three polyexponential

functions:

Y1ðtÞ Z c11 eK0t Cc12 eKat Cc13 eKbt;

Y2ðtÞ Z c21 eK0t Cc22 eKat Cc23 eKbt;

Y3ðtÞ Z c31 eK0t Cc32 eKat Cc33 eKbt

Although the analysis uses only two parameters a and b,

the systematic treatment suggests inclusion of a third term

with rate constant ‘0’. Coefficients cij are then defined as

follows:

By substituting the original conditions, the above

literature definitions of c32 and c33 may be altered to

(aKb) as common denominator for all coefficients:

c32 Z
ðk12 KaÞk31=a

a Kb
Z

b Kk31

a Kb
Z

k12 Ck21 Ka

a Kb
;

c33 Z
ðk12 KbÞk31=b

a Kb
Z

a Kk31

a Kb
Z

k12 Ck21 Kb

a Kb

The first form is an obvious rearrangement, the second is

most convenient for actual computation, the third indicates

that c32ZK(c12Cc22) and c33ZK(c13Cc23) are the

negative sums of the corresponding coefficients of Y1 and

Y2. In summary, the model is described by these functions:

† Y1 is a Bateman function with two positive terms.

† Y2 is a Bateman function with two identical coefficients

with opposite sign.

† Y3Z1K(Y1CY2) is defined according to mass balance.

All coefficients are based on the condition that a dose

DZ1 is administered to the plasma compartment at time

zero. A distribution volume VP, converting amounts into

Fig. 1. Illustration example according to digoxin data [9]. Compartments

are numbered according to general conventions, rate constants kij as ‘to i

from j’.

c11 Z 0 c12 ZK
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