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1. Introduction

Sampling uncertainty (also referred to as sampling error by
statisticians) arises out of the process of taking a sample from a
much larger population. A sample is (usually) much smaller than
the population. Therefore, by taking a sample, information will
be lost. This phenomenon occurs in the statistical interpretation
of DNA evidence. All credible DNA statistics rely, inter alia, on a
set of allele frequencies which are estimated from a DNA
database which may have been collected explicitly for this
purpose, or may be an offender database. A DNA database can be
regarded as a sample, which is assumed to be representative,
from a much larger population. All DNA statistical calculations,
whether they are match probabilities, Random Man Not
Excluded (RMNE), paternity indices (PI) or likelihood ratios
(LR) have uncertainty associated with them from a number of
sources including, but not restricted to, sampling uncertainty.
This fact has been recognized in the forensic community for
some time, and in a number of jurisdictions has been
incorporated into active casework [3].

Brenner has argued that an assessment of sampling uncertainty
does not assist the court [4]. Whilst his argument has some force it
is expected that all forms of uncertainty in evidence will be
disclosed to a court. This applies to such disparate evidence types

as eyewitness evidence and, we believe, DNA statistics. Incorpo-
ration of an assessment of sampling uncertainty is almost
ubiquitous in scientific work and it is difficult to see how forensic
science should be exempt. However, incorporation of sampling
uncertainty into routine testimony is not universal with notable
exceptions including the FSS and LGC in the UK.

If a sampling uncertainty correction is to be applied it is
desirable that it operates ‘‘as advertised.’’ This means that, say, a
95% confidence interval should include the true value 95% of the
time. This is referred to as the size of the method.

Our particular interest in this paper is two-fold. In the first
instance we wish to revisit previous work assessing the size of
various methods [1] but using the full IdentifilerTM profiles now
available rather than the six locus SGM set investigated previously.
Secondly, we are interested in the effect of the prior used in the
Bayesian HPD method. Triggs and Curran investigated this to some
extent in [2] and recommended the 1/k prior. However, the
uniform prior, has a powerful natural interpretation whereas the 1/
k does not. We take the opportunity to investigate this
recommendation further here.

2. Methods

The methods for assessing sampling uncertainty under
examination are as follows:

1. The ‘‘factor of 10’’ rule
2. The normal approximation
3. The size bias correction
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4. The Bayesian HPD with a uniform prior
5. The Bayesian HPD with a 1/k prior

We explain each of these methods briefly.

2.1. The ‘‘factor of 10’’ rule

The ‘‘factor of 10’’ rule appears as an un-numbered suggestion
in the second National Research Council Report on the forensic
evaluation of DNA evidence [5]. This report is usually referred to as
NRC II in the literature. The relevant paragraph (p. 160) from the
NRC II is as follows:

‘‘The empirical studies show that the differences between the
frequencies of the individual profiles estimated by the product
rule from adequate subpopulation databases, (at least several
hundred persons) are within a factor of about 10 of each other
and that provides a guide to the uncertainty in the determina-
tion for a single profile.’’

As previously noted this method is easily implemented and has
some empirical support, but it suffers from the major short coming
that it neither reflects the reduced uncertainty that may be
obtained by increasing the size of the database nor the increased
uncertainty that results from more loci.

2.2. The normal approximation

Chakraborty et al. [6], using the theory of Good [7] suggested a
method which relies on a normal approximation, in that the sum of

the logarithm of the genotype frequencies has an approximately
normal distribution because of the central limit theorem. This
method appeared as equations 5.8b and 5.8c in the NRC II. The
reader is referred to Buckleton et al. [8] for details of this method.

2.3. The size bias correction

The size bias correction follows the reasoning of Balding [9],
later corrected in Evett and Weir [10]. In fairness to Balding, his
method was never meant to provide a way to assessing sampling
error. The Balding formulae give the Bayesian posterior mean of
the allele probabilities. However, because of misinterpretations,
the size bias method has substantial uptake in the forensic
community as a method for simultaneously dealing with rare or
previously unobserved alleles and sampling uncertainty. The
method, as implemented, uses the formulae

PAB ¼ 2
xA þ 2ð Þ xB þ 2ð Þ

2N þ 4ð Þ 2N þ 4ð Þ (1)

for heterozygotes and

PAA ¼
xA þ 4

2N þ 4

� �2

(2)

for homozygotes where N is the number of people in the database,
and xA and xB are the observed counts of alleles A and B respectively
in the database. These formulae have the intuitive explanation that
‘‘the suspect plus the individual who left the crime scene stain have
been added to the database.’’

Factor of 10 N = (100)
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Fig. 1. Simulation results for N = 100.
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