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H I G H L I G H T S

c Fuel LCA models are used to describe the uncertainty and variability in GHG emissions.
c Opt-in programs reduce uncertainly but considerable uncertainty remains.
c We discuss policy approaches that can be used to account for uncertainty in a robust policy design.
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a b s t r a c t

Policies formulated to reduce greenhouse gas (GHG) emissions, such as a low-carbon fuel standard,

frequently rely on life-cycle assessment (LCA) to estimate emissions, but LCA results are often highly

uncertain. This study develops life-cycle models that quantitatively and qualitatively describe the

uncertainty and variability in GHG emissions for both fossil fuels and ethanol and examines

mechanisms to reduce those uncertainties in the policy process. Uncertainty regarding emissions from

gasoline is non-negligible, with an estimated 90% confidence interval ranging from 84 to 100 g CO2e/MJ.

Emissions from biofuels have greater uncertainty. The widths of the 90% confidence intervals for corn

and switchgrass ethanol are estimated to be on the order of 100 g CO2e/MJ, and removing emissions

from indirect land use change still leaves significant remaining uncertainty. Though an opt-in policy

mechanism can reduce some uncertainty by incentivizing producers to self-report fuel production

parameters, some important parameters, such as land use change emissions and nitrogen volatilization,

cannot be accurately measured and self-reported. Low-carbon fuel policies should explicitly acknowl-

edge, quantify, and incorporate uncertainty in life cycle emissions in order to more effectively achieve

emissions reductions. Two complementary ways to incorporate this uncertainty in low carbon fuel

policy design are presented.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Life-cycle assessment (LCA) endeavors to characterize the
environmental impacts of a product or service throughout its full
life cycle, from the extraction of raw materials through manufac-
turing, use, and disposal (Williams et al., 2009). LCA has become
an important and prevalent tool for environmental policy makers,
playing a crucial role in the development of the California
low-carbon fuel standard (LCFS) (Farrell and Sperling, 2007a),
the U.S. national renewable fuel standard (RFS) in the Energy
Independence and Security Act of 2007 (U.S. Congress, 2007), as

well as biofuel policies in other countries, particularly the UK
renewable energy directive (RTFO) and the European Union’s
renewable energy directive (RED). These policies promote the
use of biofuels and other fuels that promise life-cycle greenhouse
gas emissions reductions compared to petroleum-based fuels in
the transportation sector.

During the course of any LCA, modelers must make many
decisions regarding things that will or will not be included in the
system, data sources most appropriate to characterize the system,
and methods to estimate values for which no data are available.
As a result, analysts looking at the same product or service can
make different decisions in these areas, thereby arriving at
different and sometimes disparate conclusions that may suggest
different courses of actions for decision makers. Large, complex
systems frequently have many decisions to be made in these
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areas, which can make it difficult to arrive at the ‘‘true’’ value to
quantify the impact of product or service under investigation.
Understanding and addressing the magnitude of the uncertainty
in the model output is essential for robust decision-making.

Uncertainty in the life-cycle assessment context can be
broadly categorized as either parameter uncertainty or model
uncertainty. The first, parameter uncertainty, results from not
precisely knowing a specific model input value. This can result
from: data which are simply unavailable and for which proxy data
must be used; measurement error on collected data; poor
scientific understanding of how some part of the model works;
or, data that vary temporally or geographically for the system
under analysis. The second category, model uncertainty, is
broader in scope. It results from not knowing how to construct
(parts of) a mathematical model to represent a real-world
process. Some examples of model uncertainty are: how to allocate
emissions from one process across multiple co-products; how
economically-mediated production impacts will evolve over
space and/or time; what global warming potentials to use for
greenhouse gas emissions; and, what processes to include in the
system boundary.

Quantitative methods to deal with uncertainty in LCA, as
suggested by many previous studies and summarized by Lloyd
and Ries (2007) and Williams et al. (2009), include probabilistic
simulation, intervals, scenario modeling, fuzzy data sets and
analytical uncertainty propagation. When dealing with parameter
uncertainty, probability distributions are specified using data
and/or expert judgments, then simulation methods and uncer-
tainty importance analyses are used to establish uncertainty in
output (Huijbregts et al., 2003). Quantifying the range or impact
of model uncertainty is often more challenging than parameter
uncertainty. This is because many difficulties of model uncer-
tainty cannot be addressed by any amount of data collection,
especially those projecting future system developments. Often
the best that can be done is to construct all reasonable and
feasible models and use the least and greatest output values to
establish bounds on quantitative model results. Recognizing
uncertainty complicates a decision maker’s task of choosing
among fuel types; however, neglecting uncertainty in favor of
(relative) simplicity leads to less robust decisions on policy. For
example, if an opportunity fuel improves upon an incumbent, even
without precise emissions estimates for either fuel, then a recom-
mendation to displace the incumbent can be made with improved
confidence. See Mullins et al. (2011) for further discussion.

In the United States, both the RFS and LCFS aim to increased
biofuel usage, and therefore reduced greenhouse gas emissions
when compared to a business as usual case, but each takes a
different approach at achieve reductions. The RFS aims to reduce
GHG emissions from the transportation sector with specific
biofuel volume mandates, whereas the LCFS reduces GHG emis-
sions from the transportation sector by mandating a state-wide
fuel mix GHG reduction target (10% in California), letting blenders
decide how much of each fuel type to use to meet this target.
These fuel types are more precisely defined for the LCFS than the
RFS, so the LCFS design may offer an improvement over the RFS
with regards to emissions uncertainty.

To assess this hypothesis, this study employs previously
developed life-cycle fuel emissions Monte Carlo models to exam-
ine the effectiveness of a low-carbon fuel policy design in
reducing the uncertainty in calculated carbon intensity (the
grams of CO2-equivalent emissions per MJ of fuel energy). These
results can, in turn, provide a better estimate of achievable
emissions reductions and a more robust decision-making frame-
work for low-carbon fuel selection.

This analysis is motivated by a national LCFS, which is
proposed to operate in a manner that is largely similar to the

LCFS currently enacted in California, where transportation fuels
are assigned a carbon intensity and regulated fuel blenders are
required to sell fuel that collectively does not exceed a given
carbon intensity threshold (UC (University of California) Davis,
2012). However, many of the ideas and results can be adapted to
any carbon policy (such as RFS, a carbon tax, or a cap-and-trade
program) that relies on LCA to generate GHG emissions estimates.

The paper proceeds by first describing the previously devel-
oped Monte Carlo models and presenting summary results for
corn ethanol, switchgrass ethanol, and gasoline. Next, the paper
qualitatively discusses sources of uncertainty and presents
spatially disaggregated results the carbon intensity of the trans-
portation fuels modeled here. With these initial results in mind,
the paper explores the impacts of an ‘‘opt-in’’ policy mechanism
on reducing uncertainty and quantifies the problem of adverse
selection that could result, and summarizes some suggested
policy mechanisms for handling the remaining uncertainty.

2. Modeling variable and uncertain greenhouse gas emissions

This study uses two models developed previously to quantita-
tively characterize uncertainty in life-cycle greenhouse gas emis-
sions from fossil- and bio-based transportation fuels using Monte
Carlo simulation. The fossil fuel model comes from Venkatesh et al.
(2011), who defined the life cycle to include crude oil extraction,
transport, refining, product transport and fuel combustion. This
model has been slightly updated to include the emissions of
petroleum fuels produced from Canadian oil sands. Emissions
due to the extraction of Canadian oil sands are taken from
Charpentier et al. (2009). The lower, median and upper bounds
summarized in Charpentier et al. (2009) were used as the para-
meters of a triangular distribution representing emissions from oil
sands production (60, 100, 170 kg CO2e/bbl). Results for gasoline
are presented in Fig. 1. The mean values of life-cycle GHG
emissions factors are 90 g CO2e/MJ for gasoline and 94 g CO2e/MJ
for diesel. Of the total for gasoline, nearly 80% consists of combus-
tion emissions, with contributions of 9% from crude extraction and
transport, 11% from refining, and 1% from product transport. The
90% confidence intervals of these fuels indicate that parameter
uncertainty, previously ignored by most LCA studies, is indeed non-
negligible. For example, the 90% confidence interval for gasoline
ranges between, 84 and 100 g CO2e/MJ, 17% of the mean value.

The biofuels model used comes from Mullins et al. (2011), who
include the following stages in their life-cycle assessment: Direct
and indirect land use change; Feedstock production; Feedstock
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Fig. 1. Probability distributions for total GHG emissions for corn and switchgrass

ethanol with and without ILUC, and a truncated distribution for gasoline. Produced

using models from Mullins et al. (2011) and Venkatesh et al. (2011).
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