
Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Sources of uncertainty in gross primary productivity simulated by light use
efficiency models: Model structure, parameters, input data, and spatial
resolution

Yi Zhenga,b, Li Zhanga,b,⁎, Jingfeng Xiaoc, Wenping Yuand,e, Min Yana,b, Tong Lia,b,
Zhiqiang Zhangf

a Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
bHainan Key Laboratory of Earth Observation, Hainan 572029, China
c Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
d School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou 519082, China
e Zhuhai Joint Innovative Center for Climate-Environment-Ecosystem, Zhuhai Key Laboratory of Dynamics Urban Climate and Ecology, Beijing Normal University, Beijing
100875, China
f College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

A R T I C L E I N F O

Keywords:
Gross primary productivity
Light use efficiency
Uncertainty
Carbon cycle
Eddy covariance
Ecosystem model

A B S T R A C T

Accurate estimation of gross primary productivity (GPP) is essential for understanding ecosystem function and
global carbon cycling. However, there is still substantial uncertainty in the magnitude, spatial distribution, and
temporal dynamics of GPP. Using light use efficiency (LUE) models, we conducted a comprehensive analysis of
the uncertainty in GPP estimation resulting from various sources: model structure, model parameters, input data,
and spatial resolution. We first evaluated the influences of model structures, namely the fraction of absorbed
photosynthetically active radiation (FPAR), water scalar (WS), and temperature scalar (TS), on site-level GPP
estimates. We then used the Sobol’ sensitivity analysis to quantify the relative contributions of model input
variables to the uncertainty in GPP. In addition, we used different land cover and meteorological datasets to
examine the effects of input data and spatial resolution on the magnitude and spatiotemporal patterns of GPP.
We found that the model structures affected not only model performance but also model parameters in a manner
that differed with vegetation type and region. Thus, proper model structures and rigorous model para-
meterization and calibration should be adopted in GPP modeling. The Sobol’ sensitivity analysis showed that the
meteorological drivers including photosynthetically active radiation (PAR) and daily minimum temperature
(TMIN) had larger contribution to the uncertainty in simulated GPP than did the surface reflectance-based
indices including enhanced vegetation index (EVI) and normalized difference water index (NDWI). At the re-
gional scale, different land cover datasets had the largest impacts on GPP simulations, especially in hetero-
geneous areas, followed by the scale effects from different spatial resolutions; changing meteorological datasets
had the smallest effects. Therefore, more accurate and finer-resolution land cover maps and meteorological
datasets are essential for more accurate GPP estimates. Our findings have implications for improving our un-
derstanding of the full uncertainty in carbon flux estimates and reducing the uncertainty in carbon cycle si-
mulations.

1. Introduction

Gross primary productivity (GPP) is the amount of carbon absorbed
by plants through photosynthesis. As an important component of the
carbon cycle, GPP is the largest carbon flux between the terrestrial
biosphere and the atmosphere. GPP also drives ecosystem services such

as food, fiber, and wood production (Beer et al., 2010). Therefore, ac-
curately quantifying GPP at various spatial and temporal scales is es-
sential for better understanding ecosystem function and global carbon
cycling. However, there is substantial uncertainty associated with the
estimation of GPP, particularly at regional to global scales.

Light use efficiency (LUE) models have been widely used to estimate
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GPP (Potter et al., 1993; Running et al., 2004; Xiao et al., 2004; Yuan
et al., 2007). These models are based on the classical LUE logic
(Monteith, 1972; Monteith and Moss, 1977):

= × × ×GPP PAR FPAR ε fmax S (1)

where PAR is the incident photosynthetically active radiation (MJ m−2)
per time period, FPAR is the fraction of PAR absorbed by vegetation
canopies, Ɛmax is the maximum LUE (g C MJ−1) under the condition
without environmental stresses, and fS represents the environmental
stresses (e.g., water scalar (WS) and temperature scalar (TS)) ranging
from 0 to 1. LUE models have simple model structures and require only
a small number of input variables. Despite their simplicity, the LUE
models can generally capture the spatial and temporal dynamics of GPP
fairly well (Yuan et al., 2007; Zhao and Running, 2010). However, si-
milar to process-based ecosystem models (Cramer et al., 1999; Xiao
et al., 2009; Thorn et al., 2015; Ma et al., 2017), LUE models can also
lead to significant uncertainty in regional or global carbon flux esti-
mates (Gebremichael and Barros, 2006; Verma et al., 2014; Yuan et al.,
2014).

Model simulations have several sources of uncertainty, including
model structures, model parameters, and input datasets (Beck, 1987;
Xiao et al., 2014). Although LUE models are all based on the LUE logic,
they have been developed using different model structures. Different
representations have been used for FPAR, WS, and TS. Model structure
has been considered as the most important factor that affects parameter
values (e.g., Ɛmax) and model performance (Yuan et al., 2014). Un-
certainties in model parameters, particularly Ɛmax, significantly influence
the accuracy of simulated GPP (Wagle et al., 2016). The spatial datasets
that affect the uncertainty in GPP estimation mainly include land cover
maps and meteorological data. Land cover maps adopted in carbon cycle
modeling are usually derived from satellite data, and substantial un-
certainties exist due to their data sources, classification schemes, and
classifiers (Giri et al., 2005). For a given site or grid cell, the land cover
type directly determines the value of parameters, particularly Ɛmax

(Wang et al., 2010). Besides land cover maps, meteorological data are
also critical drivers for the estimation of carbon fluxes. The uncertainty
of the meteorological products may be propagated to modeling results
(Gebremichael and Barros, 2006; Heinsch et al., 2006).

Many studies have examined the effects of individual source of
uncertainty (e.g., model structures, parameters, or input data) on GPP
modeling using LUE models. For example, Zhang et al. (2015a) eval-
uated the model performance of four LUE models using 51 eddy cov-
ariance flux towers and identified possible further improvements
through structure optimization. Xiao et al. (2014) quantified the un-
certainty of model parameters and assessed its effects on the estimation
of regional carbon fluxes. A few studies also examined the influences of
different meteorological data and land cover representation on GPP
simulations (Zhao et al., 2006; Xiao et al., 2011; Cai et al., 2014). In
addition, spatial heterogeneity and the resolution of input data (e.g.,
land cover map, meteorological data) may also lead to uncertainty in
simulated carbon fluxes (Liu, 2014; Zhao and Liu, 2014). However, to
our knowledge, no study has systematically evaluated the influences of
model structure, model parameters, input data, and spatial resolution
on the uncertainty in carbon fluxes.

In this paper, we assessed the uncertainty in simulated GPP re-
sulting from the three main sources of uncertainty: model structures,
model parameters, and model inputs. We first analyzed the influence of
model structures on model parameters and model uncertainty at site
level using different representations of FPAR, WS, and TS. We then
quantified the relative contributions of model input variables to GPP
uncertainty. Finally, we investigated the effects of different model input
datasets (land cover maps and meteorological datasets) and spatial
resolutions on the magnitude and spatiotemporal patterns of GPP at the
regional scale. This study will improve our understanding of the un-
certainty in GPP modeling and will potentially lead to more accurate
carbon flux estimates.

2. Materials and methods

2.1. Study area

This study was carried out around the agro-pastoral ecotone of
northern China (39.0 °N to 46.8 °N, 110.5 °E to 122.8 °E) (Fig. 1). From
the northwest to the southeast, the annual mean temperature and
precipitation range from –5℃ to 10℃ and 35mm to 600mm, respec-
tively (calculated from the meteorological datasets in Section 2.2.3).
The large temperature and precipitation gradients make the region a
natural ecotone from arid and semi-arid to humid land, leading to
grassland–cropland–forest mixed landscapes. The two dominant vege-
tation types of the ecotone are steppes and croplands, while forests
(mainly deciduous broadleaf forest (DBF)) only account for a relatively
small fraction of the region. The highly heterogeneous landscape ac-
companied with densely instrumented eddy covariance flux towers
(Fig. 1) make the region a unique test bed for uncertainty analysis of
ecosystem models (e.g., LUE models).

2.2. Data

2.2.1. Eddy covariance and meteorological data from flux towers
We used carbon flux and meteorological data from six eddy covar-

iance flux sites across the study area (Fig. 1). Our study sites consist of
four grassland sites – CN-Du2 (typical steppe), CN-Xi1 (typical fenced
steppe), CN-Xi2 (degraded steppe), and Xfs (short grass steppe); one
cropland site – CN-Du1; and one forest site – CN-Bed. The data for the
forest site (CN-Bed) was obtained from the US-China Carbon Con-
sortium (USCCC), and the data for all other five sites were obtained
from the LaThuile Synthesis Dataset (http://fluxnet.fluxdata.org). More
detailed information on these sites can be found in the references in
Table 1.

For each site, we used daily or hourly GPP, photosynthetically ac-
tive radiation (PAR), air temperature (T), and vapor pressure deficit
(VPD). To match the intervals (8-day) of the data products derived from
the moderate resolution imaging spectroradiometer (MODIS), we ag-
gregated the daily or hourly values of each variable to 8-day time step.
We ignored any 8-day interval with more than 5 days of missing daily
values to minimize the errors and uncertainties of the flux and me-
teorological data.

The eddy covariance flux towers directly measure the net ecosystem
exchange (NEE) of carbon dioxide between ecosystems and the atmo-
sphere. GPP was calculated as the difference between daytime eco-
system respiration (REd) and daytime NEE (NEEd). REd was estimated
using daytime temperature and the equation between nighttime tem-
perature and nighttime NEE. The partitioning of NEE and the gap-filling
of missing or bad data were based on the methods described in
Reichstein et al. (2005).

2.2.2. Remote sensing data
In this study, we used surface reflectance, FPAR, GPP, and leaf area

index (LAI) products over the period 2001–2012. The surface re-
flectance (MOD09A1, collection 006), FPAR (MOD15A2, collection
005), and GPP (MOD17A2, collection 005) products were derived from
MODIS and were obtained from NASA’s Distribute Active Archive
Center (DAAC) (https://ladsweb.nascom.nasa.gov/). The LAI product
was the Global Land Surface Satellite Leaf Area Index (GLASS LAI)
product provided by the Center for Global Change Data Processing and
Analysis of the Beijing Normal University (http://glass-product.bnu.
edu.cn/). Each product is available at 8-day interval. Because the
footprint of eddy covariance flux towers is generally less than 1 km2

(Schmid, 2002), we extracted the average values of all grid cells within
the 1 km×1 km area surrounding each tower for each variable and for
each time step. The linear interpolation technique was used to fill the
missing values or to replace the unreliable values determined by the
quality assurance flags.
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