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A B S T R A C T

Workers in various industries are often subject to challenging physical motions that may lead to work-related
musculoskeletal disorders (WMSDs). To prevent WMSDs, health and safety organizations have established rules
and guidelines that regulate duration and frequency of labor-intensive activities. In this paper, a methodology is
introduced to unobtrusively evaluate the ergonomic risk levels caused by overexertion. This is achieved by
collecting time-stamped motion data from body-mounted smartphones (i.e., accelerometer, linear accel-
erometer, and gyroscope signals), automatically detecting workers’ activities through a classification framework,
and estimating activity duration and frequency information. This study also investigates various data acquisition
and processing settings (e.g., smartphone’s position, calibration, window size, and feature types) through a
leave-one-subject-out cross-validation framework. Results indicate that signals collected from arm-mounted
smartphone device, when calibrated, can yield accuracy up to 90.2% in the considered 3-class classification task.
Further post-processing the output of activity classification yields very accurate estimation of the corresponding
ergonomic risk levels. This work contributes to the body of knowledge by expanding the current state in
workplace health assessment by designing and testing ubiquitous wearable technology to improve the timeliness
and quality of ergonomic-related data collection and analysis.

1. Introduction

With advancements in mobile technology, modern smartphones are
now equipped with a host of sensors which can capture location and
motion-related data of a person within the environment. These devices
have the potential to facilitate everyday life in various ways by giving
users contextual information about their activities, interests, and sur-
roundings without being obtrusive and interruptive. In addition, com-
pared to other classes of data-capturing devices, smartphones are more
ubiquitous (thus more affordable) and intuitive to use, can be con-
trolled and operated remotely (using the cloud technology), and require
a relatively lower maintenance and operating costs. The value of using
smartphones in domains such as healthcare, wellbeing, and behavioral
analysis has been investigated over the past few years. For example,
smartphones are being used for monitoring patients and elderly people
[1–3]. In addition to health monitoring, smartphones can also be used
in managing and promoting human well-being [4,5]. Also, smartphone
technology can be integrated with behavioral health care [6]. For in-
stance, Timmons et al. [7] used audio and global positioning system
(GPS) data from smartphones to unobtrusively and remotely monitor

the behavior of young couples. Furthermore, smartphone’s built-in in-
ertial measurement unit (IMU) can be utilized to prevent work-related
injuries, for example, fall from a height [8], shoulder injury [9], and
upper-limb injury [10]. Particularly, recent studies have explored the
potentiality of smartphone sensor in preventing musculoskeletal dis-
orders (MSDs) associated with awkward posture [11,12].

MSDs are major health issues that affect a large number of in-
dividuals across many occupations and industries (e.g., from office
space work to manufacture and construction), leading to long-term
disability and economic loss [13]. MSDs refer to a group of disorders or
injuries resulting from the stress in a person’s inner body parts (e.g.,
muscles, nerves, tendons, joints, cartilages, and spinal discs) while the
person moves [14,15]. Examples of MSDs include Carpal Tunnel Syn-
drome (CTS), Tendonitis, and Bursitis [16,17]. MSDs caused particu-
larly due to the activities in a workplace are referred to as work-related
musculoskeletal disorders (WMSDs). In 2009 alone, direct workers’
compensation costs due to WMSDs were amounted to be more than $50
billion in the U.S. [18]. Moreover, workers exposed to major WMSDs
may face permanent disability that can prevent them from carrying out
their professional tasks and, in severe cases, regular everyday tasks
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[15]. In 2015, workers employed by the private sector in the U.S. re-
quired a median of 12 days to recover from WMSDs before they could
return to work [19].

The construction industry is considered as one of the most ergono-
mically hazardous occupations [20]. Compared to other industries,
construction activities are more physical and labor-intensive. Moreover,
with increasing complexity and scope of construction projects, workers
(especially those with limited skills and training) often find themselves
performing tasks that are beyond their natural physical limits [21]. This
sustained physical labor over a long period of time can trigger WMSDs
which in turn adversely affect the project budget, schedule, and pro-
ductivity. In 2015, the WMSD-related incident rate (number of illnesses
and injuries per 10,000 equivalent full-time workers) was 34.6 [19].
WMSDs are the major source of concern in other industries as well.
Among all goods-producing sectors, workers in the manufacturing,
agriculture, forestry, fishing, and hunting sectors, and among all the
service-providing sectors, workers in the transportation, warehousing,
healthcare and social assistance sectors are reported to be more exposed
to WMSDs [20]. Nursing assistants, laborers, and freight, stock and
material movers experienced the highest number of WMSD cases in
2013 [20].

To prevent WMSDs, various health and safety organizations have
established rules and guidelines to identify the risks associated with
performing certain tasks. Such efforts aim at the ergonomic design of
project tasks, tools, and workplace to match physical jobs with workers’
natural body capacities. As an example, the prevention through design
(PtD) initiative, introduced by the National Institute for Occupational
Safety and Health (NIOSH), aims at limiting and ultimately preventing
occupational injuries, illnesses, and fatalities that can be achieved by
eliminating the potential risks to workers at the source as early as
possible in a project life cycle [22]. Since a proper PtD practice requires
prior identification of the risk factors, it is necessary to collect adequate
spatiotemporal work-related data. The collected data, if properly ana-
lyzed and interpreted, can be used to promote workers’ safety and
health by improving the quality of job training and eliminating po-
tential ergonomic risks in the workplace.

Field practices of data collection are traditionally based on self-re-
porting, manual observation, or the use of sophisticated sensor net-
works. Such practices, however, are time-consuming, naturally ob-
trusive, and require technical knowledge that may not be available
among construction practitioners. Therefore, the objective of this re-
search is to design and test a methodology where an unobtrusive and
automated data processing framework is used to calculate ergonomic
risks associated with occupational tasks, in particular, those comprising
the use of excessive force (overexertion). In the designed methodology,
mobile technology (smartphones) is used to collect multi-modal time-
motion data from the workers while they perform different activities.
Next, machine learning will be used to recognize workers’ activities,
and then, activity duration and frequency information will be extracted.
The output of this step will be subsequently used to identify the ergo-
nomic risk levels for each worker. Calculated risk levels can be used to
identify major sources of ergonomic risks which can help workers and
decision-makers (e.g., project managers, safety officers, super-
intendents) to take proper actions to preemptively limit and ultimately
eliminate such risks by redesigning high-risk activities and/or work-
spaces.

2. Literature review

With 33% of all cases, the U.S. Bureau of Labor Statistics [19] ranks
overexertion first in the leading events or exposures that cause WMSDs.
By definition, overexertion is the event category that includes injuries
related to exerting an excessive force beyond the body’s capacity. Ac-
tivities that require force can be categorized into two groups: lifting/
lowering/carrying (category-1), and pushing/pulling (category-2) [23].
A risk factor is defined as a condition present in the workplace that is

directly responsible for health hazards [17]. For example, applying
excessive force to lift a heavy object can be considered as a risk factor
for overexertion. However, the mere presence of a risk factor is not
sufficient to evaluate the risk associated with a task, rather the risk also
depends on the extent of the risk factor [17]. Determining if an ex-
posure or a risk factor will result in WMSDs depends on intensity,
duration, and frequency, or a combination of these factors [24]. In-
tensity, duration, and frequency refer to how much, how long, and how
often, respectively, one is exposed to a risk factor. Generally, risk level
rises with the increase of these factors. For instance, if a worker for-
cefully (i.e., intensity factor) and repetitively (i.e., frequency factor)
pushes a heavy object for a long period of time (i.e., duration factor),
the worker is exposed to WMSDs (e.g., back pain). These are regulated
by the Occupational Safety and Health Administration (OSHA), which
has provided a set of empirical rules assessing the risk of activities
according to their type, duration, and frequency.

Towards this goal, three different approaches have been practiced in
general: (1) self-assessment, (2) observational, and (3) direct mea-
surement [25]. In self-assessment, workers are asked to provide risk-
related data. Though this approach has low initial cost and is
straightforward, researchers have stated that workers’ self-assessments
on exposure levels are often imprecise, unreliable, and biased [26]. The
observation-based approach involves real-time assessment or analysis
of the recorded video. But it is mostly impractical in nature due to the
substantial cost, time, and technical knowledge required for post-ana-
lysis of large amounts of non-heterogeneous data [24].

Unlike the previous two approaches, direct measurement uses tools
to collect workers’ posture- and motion-related data. Examples of this
approach include but are not limited to using off-the-shelf micro-
electro-mechanical sensors (MEMS), e.g., IMUs, and vision-based sen-
sors. Vision-based sensors such as Red-Green-Blue (RGB) camera and
Kinect suffer in extreme lighting conditions and optical occlusions [27].
For this reason, wearable sensors such as IMUs have gained more po-
pularity for being inexpensive, easy to install and maintain, and re-
quiring minimum training for data collection and human activity re-
cognition (HAR) [28]. Moreover, previous studies have shown that
when compared to the depth-based sensors (e.g., Kinect), IMUs are
superior for detecting movements of body parts because they are more
sensitive than Kinect (i.e., capable of capturing subtle movements),
more robust (i.e., capable of providing stable data), and have higher
sampling rate (e.g., > 50Hz, while the maximum frequency for Kinect
is 30 Hz) [27]. While previous studies in this area have revealed some of
the shortcomings of the direct measurement approach including high
initial investment cost, maintenance cost, and technical knowledge to
interpret data, compared to other approaches, this method by far yields
the most valid assessment of risk factors [24,29].

In order to overcome the implementation challenges of direct-
measurement approach, the authors used smartphones as a data col-
lection device. Recent work has explored the merit of built-in smart-
phone IMU sensors to collect input data for machine learning algo-
rithms to identify field activities and to estimate activity durations
[30–33]. We have to note that compared to traditional physical activity
recognition (e.g., walking, running, and sitting) [34–38], the activities
performed in construction sites are much more complex in nature (e.g.,
loading, unloading, lifting, lowering, carrying, pushing, and pulling).
Previous efforts in identifying construction activities include the use of
single-sensor (i.e., accelerometer) data to identify masonry work
[39,40]. Particularly, Ryu et al. [40] have used data from wrist-worn
accelerometer sensors to classify more subtle mason’s actions (e.g.,
spreading mortar, laying bricks, adjusting bricks, and removing excess
mortar). While past work has mainly focused on activity recognition,
the literature is rather limited and fragmented about the prospect of
identifying ergonomic risks, particularly those associated with over-
exertion, from the outcome of multi-sensor HAR. Therefore, the ap-
plicability and robustness of existing methods are to a large extent
unexplored in overexertion-related ergonomic risk assessment. Given
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