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A B S T R A C T

A smoothed point interpolation method (SPIM) for the numerical modelling of saturated porous media in ax-
isymmetric conditions is proposed, aiming to overcome the singularity problem encountered when using SPIMs
in axisymmetric settings. The singularity is circumvented in this study by decomposition of the property matrices
of the system to sub-matrices with smoothed terms and non-smoothed terms. The salient feature of the proposed
method is that it neither incurs additional computation nor compromises on the accuracy of the method. The
proposed method is examined by numerical modelling of several benchmark axisymmetric problems, along with
a set of convergence studies.

1. Introduction

Axisymmetric problems are of predominant importance in geo-
technical engineering because of their relevance in many cases such as
uniaxial and triaxial tests, pile installation, foundation loading, and
deep tunnels. Many numerical techniques have been extended to ax-
isymmetric conditions and often used for applications in geotechnical
engineering [1–4]. In particular, finite element method (FEM) has been
widely used as an important tool for numerical simulation of geo-
technical engineering problems [e.g., 5–9].

Despite its wide-spread use, FEM has well-known inherent defi-
ciencies that may result in poor accuracy or inefficiency of the nu-
merical simulations. These deficiencies include strong reliance on the
mesh quality, overestimation of the stiffness of the model, and poor
performance when discontinuities are present. Attempts to address the
difficulties associated with the use of FEM have led to development of
meshfree methods (MMs). Since their inception, many MMs have been
developed with different features and capabilities. For more detailed
descriptions, interested readers are referred to [10–19].

Recently, a wide class of efficient MMs called smoothed point in-
terpolation methods (SPIM) have been developed [20–22] by using the
point interpolation methods (PIM) with the generalisation of the strain
smoothing operation [23] referred to as generalised gradient smoothing
operations [20]. In SPIMs, instead of using a compatible strain field, a
smoothed strain field is constructed through a smoothing operation
performed over smoothing domains. The use of smoothed strain field
overcomes the problems in PIMs associated with discontinuity of the

approximation field over the problem domain through elimination of
the need for the derivatives of the shape functions. SPIMs are very
flexible and can be formulated in many ways through different node
selection schemes and different types of smoothing domains leading to
different SPIMs [21,22,24,25]. The simplest SPIM is perhaps the cell-
based SPIM (CSPIM) in which the cells of a triangular background mesh
are used as the smoothing domains. To date, CSPIM has been success-
fully applied to plane strain problems in geotechnical engineering with
results showing its superiority to similar methods (e.g. FEM) in terms of
both efficiency and convergence rate [26].

Despite their excellent performance, application of SPIMs to ax-
isymmetric problems has received little attention in the literature. This
may be attributed to the difficulties associated with application of
SPIMs in axisymmetric conditions due to the existence of Gauss points
on the boundary of the smoothing domains on the axis of symmetry.
Specifically, CSPIM cannot be directly extended to axisymmetric con-
ditions due to the singularity problem that arises in the analysis. Wan
et al. [27] has recently proposed a formulation for application of the
smoothed finite element method (SFEM) in axisymmetric problems. To
avoid the singularity problem associated with having Gauss points on
the axis of symmetry, they have used an approximation based on em-
ploying the radius of the central point of the elements instead of radius
of each Gauss point of interest. This approach may be reasonable for
SFEM with simple shape functions, however, can be erroneous if di-
rectly extended to SPIMs because more supporting nodes, beyond the
element limits, may be involved in construction of the shape functions
in the latter. Furthermore, in the formulation suggested in [27], the
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integration of the shape functions over the elements which appears in
the smoothed strain-displacement matrix of an axisymmetric formula-
tion is obtained analytically. This approach is, however, applicable only
when simple shape functions are used, and in general, cannot be ex-
tended to SPIMs where complex shape functions (e.g., Radial PIM shape
functions) may be adopted in the formulation.

In this paper, a novel approach is presented to extend the for-
mulation of the CSPIM to axisymmetric conditions. The approach is
general in nature and can also be applied to other SPIMs and SFEM to
extend their application to axisymmetric coupled problems. The ap-
proach is based on separating the smoothed terms from the non-
smoothed terms in the property matrixes of the discretised governing
equations. The technique presented does not include any additional
approximations or computational costs compared to the plain strain
formulation [26], and therefore, does not adversely affect the accuracy
or efficiency of the numerical procedure. The validity of the proposed
method is verified through a suite of benchmark problems, ranging
from theoretical to practical problems. The accuracy and convergence
rate of the proposed formulation are studied by performing error ana-
lyses in terms of displacement and pore water pressure using a series of
simulations with different background mesh densities. The presented
method clearly manifests its superiority to FEM in the examples pre-
sented.

2. Governing equations

A two-phase porous medium consisting of a solid matrix and a sa-
turating fluid is considered. In isothermal conditions, the linear mo-
mentum and mass balance equations for the medium, initially devel-
oped by Biot [28], can be expressed as:
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Here, ′σ is the effective Cauchy stress tensor; pf is the excess pore
fluid pressure, denoting pressure in excess of the steady state fluid
pressure; γ is the Biot’s coefficient; u stands for the displacement field
of the solid matrix; v denotes the superficial velocity (flux) field of the
fluid phase, which is the average relative seepage velocity per unit cross
section area; ρ is the buoyant density of the mixture in the saturating
fluid (note that the formulation is based on the excess pore fluid pres-
sure); and g represents the gravity vector. af is the apparent compres-
sibility of the fluid, n indicates the porosity of the poroelastic medium,
cf is the compressibility of the fluid, cs is the compressibility of solid
grains and c is the drained compressibility of the solid skeleton. Voigt
notation has been adopted in which second order symmetric tensors are
written as column matrices, and fourth order symmetric tensors are
written as square matrices [24]. The sign convention of continuum
mechanics has been adopted, i.e., compressive stresses and strains are
assumed negative. Pore fluid pressure (pf ) is, however, taken as positive
in compression following the soil mechanics convention. Subscript f
and s stand for fluid and solid, respectively.  is the gradient operator,
and ∂ is the differentiation matrix. For an axisymmetric setting, they are
defined, respectively, as:
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where x = r z[ ] is the polar coordinate system, with z being the axis of

symmetry. I is the identity vector defined as =I [1 1 0 1]T for an
axisymmetric condition.

The superficial velocity is related to the excess pore fluid pressure
by the generalised Darcy’s law:
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in which kf is the tensor of intrinsic hydraulic permeability of the
medium, ρf is the density of the fluid phase, and μf is the dynamic
viscosity of the fluid phase.

A constitutive model is needed to relate the effective stress to the
strain of the solid phase. For simplicity, small strains and elastic be-
haviour are assumed for the solid skeleton, resulting in the following
relationships:

′ =σ Dε̇ ̇ (6)
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and D is the elastic constitutive matrix. ur and uz are displacement
components, and ε is the strain of the solid skeleton. The overdot de-
notes the rate of change of the corresponding variable with respect to
time.

It is assumed that the poroelastic medium fills a domain Ω with a
boundary Γ. In a standard manner, the boundary is divided into regions
where essential and natural boundary conditions for solid and fluid
phases are specified, as follows:

=u x ut t on( , ) ( ) Γu (8)
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where n is the outward unit normal vector, expressed in a matrix form
as:
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in which, nr and nz are the components of unit normal vectors in r and z
directions, respectively. In a standard manner, we have:

= ∪ = ∪Γ Γ Γ Γ Γu t p q (13)

∩ = ∩ = ∅Γ Γ Γ Γu t p q (14)

Finally, initial conditions are expressed as

=u x u x( , 0) ( )0 (15)

=x xp p( , 0) ( )f f 0 (16)

2.1. Variational form

The variational form of the governing equations is presented here.
Two sub spaces of trial functions are employed as follows

= → ∈ =u u G u uS on{ : Ω | , Γ }u h u
2 1 (17)

= → ∈ =S p p G p p on{ : Ω | , Γ }p f f h f f p
1

(18)

whereG1 denotes aG space of degree one, and Gh
1 indicates a discretised

subspace of G1. G1 is more accommodative than the well-known H1

(Sobolev space of degree one) in a sense that in G1 only the function
itself is required to be square integrable, as opposed to H1 which re-
quires the first gradient of the function to be also square integrable
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