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A B S T R A C T

A plastic-dissipation-based mesh adaptive algorithm is first introduced into the upper-bound finite-element
method to determine the stability of axisymmetric problems using an equivalent plane strain model. The failure
loads for two geotechnical examples were presented in the form of dimensionless stability numbers. The refined
meshes and power dissipations were also plotted to highlight evolutional characteristics of failure mechanisms.
Comparisons are given to verify the effectiveness of the mesh adaptive strategy. The advantage of the present
method lies in the improved accuracy of the upper-bound solution and the ability to provide failure patterns with
greater clarity.

1. Introduction

Various limit analysis approaches, such as finite-element-based
methods [1–10], boundary-element-based methods [11,12], and ele-
ment-free-based methods [13,14], have been proved to be effective
tools for evaluating the stability of engineering structures. Among these
methods, the finite-element limit analysis method is the most popular
because of its effectiveness and simplicity. In the past few decades, limit
analysis has been used to solve geotechnical stability problems for
plane strain cases, and only a few attempts have been undertaken to
analyze axisymmetric stability problems. With the help of nonlinear
programming, Lyamin and Sloan [15] and Lyamin et al. [16] in-
vestigated the failure loads of axisymmetric problems using a three-
dimensional (3D) finite-element limit analysis formulation. Later,
Krabbenhøft et al. [17] and Martin and Makrodimopoulos [18] pro-
vided convenient frameworks for performing limit analysis of 3D
structures using semidefinite programming. In this method, the flow
rule and power dissipation are expressed in the form of principal
strains, and the yield criterion can be expressed in the form of principal
stresses. However, on account of extensive computation and inherent
challenges, the solving procedure remains challenging to perform re-
lative to the process of solving the plane strain problem. To reduce the
computational effort, some studies have considered the axisymmetric
stability problem using an equivalent plane strain model [19–23].
Pastor and Turgeman [19] and Turgeman and Pastor [20] introduced
3p inequality constraints for each element in the formulations to per-
form upper- and lower-bound limit analysis of equivalent plane strain

problems, where p is the sum of sides of the polygon used to linearize
the Mohr-Coulomb yield criterion. Relative to the plane strain case,
these formulations require an additional 2p inequality constraints for
each element. Later, Chakraborty and Kumar [22] investigated the
axisymmetric problems for materials following the Drucker-Prager
yield criterion. The circumscribed/inscribed truncated icosahedrons are
applied to replace the 3D form of the Drucker-Prager yield criterion.
Moreover, based on the Haar and von Karman hypothesis [24], Kumar
and Khatri [20] and Kumar and Chakraborty [23] introduced p+3
inequality constraints for each element in the formulations instead of
the 3p inequality constraints required in the study by Turgeman and
Pastor [20]. In this approach, the hoop stress is kept close to either the
major principle compressive stress or the minor principle compressive
stress.

For axisymmetric stability problems with equivalent plane strain
models, the combination of constant strain elements (three-node ele-
ments) and velocity discontinuities is preferred to discretize these
analysis models. However, as overestimating the incompressibility of
three-node elements in the formulation, the accuracy of results is
strongly affected by the number and layout of elements. Here, based on
the Haar and von Karman hypothesis [24], an upper-bound finite-ele-
ment method in combination with a plastic-dissipation-based mesh
adaptive strategy and linear programming is employed to investigate
the stability numbers and corresponding failure patterns of axisym-
metric problems for materials following the Mohr-Coulomb yield cri-
terion. We show through two geotechnical examples that upper-bound
solutions with fine accuracy can be obtained by automatically refining
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the failure regions with high strain rates, especially for large friction
angles. Moreover, an improved failure mechanism that can exhibit the
evolutional characteristics of slip lines is also presented. The results are
compared with those available in the literature using various numerical
methods.

2. A brief review of the upper-bound finite-element method for
axisymmetric problems

The rigorous theoretical foundation of the upper-bound finite-ele-
ment method makes it suitable for determining the stability of geo-
technical structures. The formulations for axisymmetric problems ori-
ginate from those proposed by Kumar and Chakraborty [23]. The
domain in an r-z plane is applied for analysis of the equivalent plane
strain problem. Nodal velocities, plastic multiplier rates and auxiliary
variables of velocity discontinuities are all treated as unknown vari-
ables to be investigated during the solution procedure. The velocity
variables changed linearly in each element, and discontinuous velocity
fields were permitted among the elements. To establish a linear pro-
gramming model, a regular p-side polygon is applied to linearize the
Mohr-Coulomb yield criterion, which must be inscribed to the polygon.
An upper bound on the collapse load can be obtained by minimizing the
internal power dissipation minus the rate of work done by external
forces subjected to: (i) equality constraints generated from the sa-
tisfaction of (a) plastic flow both within elements and along velocity
discontinuities, and (b) velocity boundary conditions; and (ii) in-
equality constraints arising from (a) the linearization of the yield cri-
terion and (b) the elimination of the nonlinear expressions generated
from the imposition of constraints along velocity discontinuities.

Compared with plane strain problem, no difference is generated in
the axisymmetric formulation when applying constraints along velocity
discontinuities and velocity boundaries. These relative formulations are
explained in detail in Sloan and Kleeman [1]. However, the constraints
arising from the imposition of the associated flow rule within elements
are different because of the introduction of the Haar-von Karman hy-
pothesis, which states that the circumferential stress σθ= σ1 (maximum
compressive normal stress) in an active case and that σθ= σ3 (minimum
compressive normal stress) in a passive case. The correctness of the
Haar-von Karman hypothesis has been confirmed [25,26], and this
hypothesis has been shown to be a natural consequence in combination
of the associated flow rule and the Mohr-Coulomb yield criterion [27].
With reference to Fig. 1, except for those originating from the Mohr-
Coulomb yield criterion, three additional inequality yield constraints
are defined to ensure the restriction on σθ in the presented constraints.
For the case that the soil mass is in an active state of failure, the three
expressions can be cast in the following form:

= − ⩽+F σ σ 0p θ r1 (1a)

= − ⩽+F σ σ 0p θ z2 (1b)

= − ⩽+F σ σ 0p f θ3 1 (1c)

In addition, for the passive case:

= − ⩽+F σ σ 0p r θ1 (2a)

= − ⩽+F σ σ 0p z θ2 (2b)

= − ⩽+F σ σ 0p θ f3 3 (2c)

where σ σ σ( , , )r z θ are normal stresses along the direction of the axes;
σ σ( , )f f1 3 are the maximum and minimum normal stresses at failure.

The linear programming model can be cast in the following form:
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where ∫= + + +P πr σ ε σ ε τ γ σ ε dA2 ( ̇ ̇ ̇ ̇ )p i e i A r i r i z i z i rz i rz i θ i θ i, , , , , , , , , ,i
represents

the power dissipated within the element, Ai is the area of the ith ele-
ment, σ σ τ σ( , , , )r i z i rz i θ i, , , , define the normal and shear stresses of the ith

element, ε ε γ ε( ̇ , ̇ , ̇ , ̇ )r i z i rz i θ i, , , , are the normal and shear strain rates of the ith

element, and re i, is the distance between the centroid of the ith triangle
element and the z-axis; ∫=P πr c u dl2 |Δ |d i d i l i i, , d i,

represents the power
dissipated along the velocity discontinuity, ci is the cohesion; uΔ i de-
fines the tangential velocity jump for the ith velocity discontinuity, ld i, is
the length of the ith velocity discontinuity, and rd i, is the value of r at the
central point of the ith velocity discontinuity; ∫= −P πr γ v dA2 ( )e i e i A i i, , i

is
the power done by soil weight, γi is the unit weight, and vi is the velocity
for the ith element in the horizontal-direction; and (nd, ne) are the total
number of velocity discontinuities and elements, respectively.

Note that Eqs. (4a)–(4d) describe the flow rule in continuum; Fm i, is
composed of (i) the function for the mth side of the yield polygon, (ii)
additional inequality constraints shown in Eqs. (1) and (2); λṁ i, re-
presents a non-negative plastic multiplier rate; p is the total numbers of
sides of the polygon that is applied to linearize the failure criterion;
u v( , ) are the velocities of an arbitrary point for an element in the
horizontal- and vertical-directions; A B C( , , )m i m i m i, , , are parametersFig. 1. Range of the circumferential stress σθ.
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