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A B S T R A C T

An efficient probabilistic back estimation method for characterization of spatial variability is proposed by in-
tegration of the Karhunen–Loève (K-L) expansion method, the Polynomial Chaos Expansion (PCE) method and
the Markov Chain Monte Carlo (MCMC) method. To reduce the dimension of back estimation, the spatially
varied soil property is simulated using the K-L expansion method and the basic random variables of K-L terms are
parameters to be estimated. To further reduce computation load, a PCE surrogate model is constructed to
substitute the original model. The proposed method is applied on an example where a randomly heterogeneous
soil slope is subject to surface infiltration. The pressure responses are used to estimate the spatial variability of
the saturated coefficient permeability. The results show that the spatial variability can be satisfactorily esti-
mated. The coefficient of variation of the estimation is less than 5%.

1. Introduction

For an unsaturated soil slope, rainfall infiltration can diminish soil
suction in the unsaturated zone, raise the ground water level, reduce
soil shear strength and may consequently induce a slope failure. The
soil hydraulic properties are the most important soil properties to affect
the infiltration in a soil slope [1]. Accurate prediction of the slope
performance under a rainfall requires reliable estimation of soil hy-
draulic properties in the slope.

Significant natural spatial variability is observed in field for soil
properties [2–5]. This may induce the uncertainty of pore water pres-
sure distribution and groundwater table in a slope [6,7]. Traditional
methods to estimate spatial varied soil properties require large amount
of samples from site investigation [8–10]. The accuracy of the estima-
tion depends on both the total number and the spacing of samples. Field
hydraulic response data, i.e., pore water pressure, ground water level,
reflect the actual overall slope performance under a rainfall event and
may provide more representative estimation of insitu soil hydraulic
properties [11–13]. Therefore, estimation of spatial varied soil prop-
erties based on field responses using inverse methods might be an al-
ternative approach to characterize field spatial variability.

Numerous studies have been conducted to estimate soil properties
using deterministic or probabilistic inverse methods [13–18]. Some
researchers utilized measured data from site investigation to

characterize inherent spatial variability [19–23]. Limited studies focus
on the characterization of spatial variability using field responses
[24,25]. There are two reasons for this. First, spatial discretization of a
randomly heterogeneous field can produce an extremely high-dimen-
sional variable to be estimated, which will be a daunting task for in-
verse estimation. Secondly, most of inverse methods use iteration or
sampling methods to pursue optimal solutions or stationary posterior
distributions [12,13,26–28]. As numerical models are usually adopted
for infiltration analysis in a soil slope, the computation cost of inverse
estimation could be prohibitively large. Thus, inverse estimation of
spatial varied soil hydraulic properties is a challenging task.

The objective of this study is to propose an efficient probabilistic
estimation method for characterizing spatial variability of soil hy-
draulic properties based on field responses in a soil slope. The prob-
abilistic back estimation is posed within a Bayesian framework and
solved using MCMC simulation. To reduce the dimension of random
variables in back estimation, the spatially varied soil hydraulic property
is simulated using the Karhunen–Loève (K-L) expansion method. To
reduce the computation load of probabilistic back analysis, the poly-
nomial chaos expansion (PCE) is used as a surrogate model to ap-
proximate the deterministic numerical model. The procedures and the
performance of the proposed method are illustrated using an example
problem with a random heterogeneous slope which is subject to a
rainfall along the slope surface.
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2. Probabilistic back estimation method of spatial varied soil
property

2.1. Parameter estimation based on Bayesian theory

Consider a deterministic prediction model is established to simulate
the performance of a soil slope under rainfall infiltration. The random
variables of input soil parameters are represented by a random variable
vector θ. The calculated hydraulic response of the model (e.g. pore
pressure at a location) is P(θ). The field data obtained from the soil
slope is the measured response at the same location, ̂P . If the ob-
servations are at multiple locations or at different times, the observed
data can be expressed as a vector, ̂ ̂ ̂= …P PP { , , }J1 in which J is the number
of observations. The difference between the model output vector P(θ)
and the field observation vector is the residual error vector

= … …ε ε εε { , , , }i J1 with

̂ ̂= −ε P Pθ P θ( | ) ( )i i i (1)

Due to inadequacies of the prediction model, errors of the initial and
boundary conditions, parameter uncertainties and measurement errors,
the residual values of the prediction model are not expected to be zero.
Assuming the residuals are mutually independent and Gaussian-dis-
tributed with a constant variance σe2, the likelihood function is [29]:
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It should be noted that the residual errors can be non-Gaussian and
biased with non-zero means. The likelihood formulation in Eq. (2)
should be changed when different types of errors are defined. To keep
the likelihood formulation simple and reasonably acceptable, the re-
sidual errors are assumed to be Gaussian and independently distributed
with zero mean, just as in many previous studies [13,25,29–31]. Al-
ternatively, discrepancy between the model prediction and that ob-
servation can be represented with a multiplicative model bias factor
[32,33]. For prediction models with biased and non-Gaussian residual
errors, more complicated formulations of model errors should be used
[34,35].

Based on the Bayes’ theorem [36], the posterior probability density
function of θ is proportional to the product of the likelihood function
and the prior distribution function, and can be written as follows:

̂ ̂=g C g lθ P θ θ P( | ) · ( )· ( | ) (3)

where C is a normalizing constant, g(θ) is the prior distribution of θ.
For most geotechnical engineering problems, the posterior dis-

tribution function in Eq. (3) cannot be derived through analytical
means or analytical approximation. Random sampling methods such as
Monte Carlo simulation are therefore needed to generate samples from
the posterior distribution function. In this study, the random sample
generation from the posterior distribution is efficiently done using the
Markov Chain Monte Carlo (MCMC) simulation and the differential
evolution adaptive metropolis (DREAM) algorithm [37] is adopted. The
convergence of the algorithm is monitored with the R criterion of
Gelman and Rubin based on the within and between chain variance of
each parameter. The convergence diagnostic Rstat value of less than 1.2
for each random variable is required to declare convergence to a sta-
tionary distribution. Details of the algorithm and the convergence cri-
terion can be found in [37].

2.2. Dimensionality reduction with Karhunen–Loève expansion method

To estimate spatial varied soil properties using the probabilistic
back analysis method in the previous section, the slope must be dis-
cretized spatially and each random variable of the random vector θ
represents the soil property at a given location. For instance, if the
entire domain is 100m×40m and be discretized into 50×20 cells.

Therefore, the dimension of the random vector θ is 1000. The extreme
high dimensionality of the estimated parameter makes probabilistic
back estimation of spatial varied soil properties a daunting task.

In this study, the Karhunen-Loève (K-L) expansion method [38,39]
is used to simulate the field with spatially random soil properties and
reduce the dimension of the random variables. Consider the spatial
varied soil hydraulic property (e.g., saturated coefficient of perme-
ability ks), can be represented by a spatial random variable U(x) with
mean μ(x) and covariance function C(x1,x2), where x∈D is the co-
ordinates in the physical domain D. The covariance function C(x1,x2) is
symmetric and positive definite, where x1= (x1, z1) and x2= (x2, z2)
represent the coordinates of the two points in domain D.

The covariance function C(x1,x2) can be decomposed as [40,41]
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where λi and φi(x) are the ith eigenvalues and eigenfunctions (eigen-
vectors) of the covariance function, respectively. The eigenvalues and
eigenfunctions can be solved using the homogeneous Fredholm integral
equation of the second kind [42].

Based the K-L expansion, the spatial random variable U(x) can be
expressed as [43]
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where μ x( ) is the mean of U(x); θi is the ith basic independent Gaussian
random variable with θi∼N(0,1).

The physical meaning of the K-L expansion is to separate the spatial
variability on different spatial scales. Consider a two dimensional do-
main with size of 100m×40m as an example. The domain is dis-
cretized into 50×20 square cells with a size of 2m×2m. In this
study, the covariance exponential function of U(x) is adopted:
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where σ2 is the variance of U(x); and lx and lz are the horizontal and
vertical correlation length, respectively. Assume σ2 is 1.0 and lx is 50m
and lz is 10 m. Fig. 1 shows the first 8 eigenfunctions φi of the covar-
iance function. The eigenfunctions not only decrease in magnitude but
also reduce in scale. It should be noted that the proposed method in this
study is not restricted to one specific spatial correlation structure be-
cause the K-L expansion method can be applied to different covariance
functions [20,41]. In this study, the exponential correlation structure is
adopted because it is commonly adopted in many previous studies
[6,44–47]. Other forms covariance functions can also be used. When
enough field data are available, the field covariance function can be
estimated using the least square method.

According to Eq. (5), any realization of a spatially varied property is
a summation of an infinite number of eigenfunctions φi(x) weighted by
the product of λi and independently Gaussian random variable θi.
Different K-L terms in Eq. (5) reflect the variability on different spatial
scales. When a random sampling technique is used to generate reali-
zations of the field, the randomness of any realization depends on the
generated samples of Gaussian random variable θi. The total variability
of U(x) over the whole domain is distributed to all K-L terms with the
weight of λi. Hence, the sum of all eigenvalues is related to the total
variability of the random field [48].

The approximation of the actual random field can be obtained by
truncating the ordered series in Eq. (5):
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where n is the truncation level. Truncation of K-L expansion means
ignoring the small-scale variation of the field. The truncation level is
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