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A B S T R A C T

For the purpose of reliability assessment of a structure subject to stochastic excitations, the probability of the
occurrence of at least one failure event over a time interval, i.e. the first-passage probability, often needs to be
evaluated. In this paper, a new method is proposed to incorporate constraints on the first-passage probability
into reliability-based optimization of structural design or topology. For efficient evaluations of first-passage
probability during the optimization, the failure event is described as a series system event consisting of in-
stantaneous failure events defined at discrete time points. The probability of the series system event is then
computed by use of a system reliability analysis method termed as the sequential compounding method. The
adjoint sensitivity formulation is derived for calculating the parameter sensitivity of the first-passage probability
to facilitate the use of efficient gradient-based optimization algorithms. The proposed method is successfully
demonstrated by numerical examples of a space truss and building structures subjected to stochastic earthquake
ground motions.

1. Introduction

Finding the optimal design of a structural system with regard to
safety, cost or performance is one of the most essential tasks in struc-
tural engineering practice. The optimal design should achieve major
design objectives representing reliable operation and safety even under
stochastic excitations caused by natural hazards such as earthquakes
and wind loads. Due to inherent randomness in natural disasters,
however, significant uncertainties may exist in the intensity and char-
acteristics of the excitations. Therefore, the performance of such
structural systems needs to be assessed probabilistically during the
optimization process.

To deal with uncertainties effectively in structural design/topology
optimization, various optimization algorithms and frameworks were
developed recently. For instance, the so-called robust design/topology
optimization algorithms [1–3] aim to reduce the sensitivity of the op-
timal performance of a structure with respect to the randomness of
interest. By contrast, Reliability-based design/topology optimization
[4–10] aims to find optimal solutions satisfying the probabilistic con-
straints on the structural performance indicators. So far, these studies
have been mainly focusing on accounting for uncertainties in static
loads representing typical load patterns of the structure. Recent studies

on structural optimization considering dynamic excitations employed a
small number of deterministic time histories representing possible fu-
ture realizations [11,12], or focused on partial descriptors of the dy-
namic responses such as mode frequencies [13]. These approaches have
intrinsic limitations because (1) a single or small number of sample
time histories may not represent all possible realizations of stochastic
excitations, and (2) it is practically impossible to assess the probabilities
that the structural design does not satisfy the constraints on perfor-
mances, i.e. failure probabilities using this approach. Therefore, the
probabilistic prediction of structural responses based on random vi-
bration analysis is needed in the process for optimal design.

To overcome this technical challenge, the authors recently proposed
a new method for topology optimization of structures under stochastic
excitations [14]. In the proposed method, an efficient random vibration
analysis method based on the use of the discrete representation method
[15] and structural reliability theories (see [16] for a review) were
integrated within a state-of-the-art topology optimization framework.
The authors also developed a system reliability-based topology opti-
mization framework under stochastic excitations [17] to cope with
system failure events consisting of statistical dependent component
events using the matrix-based system reliability method [18]. The de-
veloped method helps satisfy probabilistic constraints on a system
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failure event, which consists of multiple limit-states defined in terms of
different locations, failure modes or time points as it optimizes a
structural system.

In these studies by the authors, the instantaneous failure prob-
abilities of the structure were evaluated at discrete time points.
However, to promote applications of design/topology optimization to
engineering design practice, the first-passage probability, i.e. the
probability of at least one occurrence of the failure over a time interval,
needs to be estimated during the optimization process. Spence et al.
[19] proposed a framework for RBDO of linear systems constrained on
the first-passage probability. This approach decouples the nested re-
liability analysis loop from the optimization loop by solving sub-opti-
mization problem formulated from simulation results. Bobby et al. [20]
presented a simulation-based framework for topology optimization of
wind-excited building structures with the consideration of the first-
passage probability.

The first-passage probability helps promote the use of the proposed
stochastic optimization framework for the design of the lateral load-
resisting system or sizing structural elements under stochastic excita-
tions with a finite duration such as earthquake excitations. To this end,
this paper introduces a stochastic design and topology optimization
method that can handle probabilistic constraints on the first-passage
probability, and demonstrates the method using numerical examples.

2. Random vibration analysis using discrete representation
method

In the aforementioned reliability-based design optimization frame-
work under stochastic excitations [14,17], the authors proposed to
perform random vibration analysis by use of the discrete representation
method [15] in order to compute the instantaneous failure probability
of the stochastic response at discrete time points. In the proposed ap-
proach, for example, a zero-mean stationary Gaussian input excitation
process f(t) is discretized as
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where s(t) (= [s1(t),…, sn(t)]T) is a vector of deterministic functions
that describe the spectral characteristics of the process, and v=[v1,
v2,…, vn]T is a vector of uncorrelated standard normal random vari-
ables. Among existing methods available to develop a discrete re-
presentation model in Eq. (1), a popular one for ground excitation
modeling is using a filter representing the characteristic of the soil
medium and a random pulse train. For example, if a filtered white noise
is used, the model in Eq. (1) is constructed as
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in which W(τ) denotes the white noise process whose power spectral
density function is ΦWW(ω)=Φ0, hf(·) is the impulse response function
of the filter, Δt= ti− ti−1, and n denotes the number of the time in-
tervals introduced for the given time period (0, t). The details of the
derivation of Eq. (2) are available in Chun et al. [14].

2.1. Response of linear system under stochastic excitations

The responses of linear systems to stochastic excitation can be de-
termined by the convolution integral consisting of their impulse re-
sponse function and the discretized input process in Eq. (1). That is, a
response time history u(t) of the linear system subjected to the sto-
chastic excitation f(t) is derived as
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where hs(·) is the impulse response function of the linear structural
system, and a(t) denotes a vector of deterministic basis functions
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Deriving the impulse response function in a finite element setting
can be computationally challenging or cumbersome. To facilitate the
process, the authors proposed novel numerical procedures in Chun et al.
[14].

2.2. Instantaneous failure probability of linear system under stochastic
excitations

In structural reliability analysis, the probability that the outcome of
a random vector X is located inside the failure domain Ωf, i.e. the failure
probability, is computed by an integral

∫=P f dx x( )f XΩf (5)

where fX(x) is the joint probability density function (PDF) of the
random vector X. The failure domain is defined by the area where the
limit-state function g(x), e.g. capacity minus demand, takes the negative
sign. In general, computing the multi-fold integral in Eq. (5) is non-
trivial or computationally challenging. Structural reliability methods
such as FORM and SORM (see [16] for a review) transform the space of
the random variable x into the uncorrelated standard normal space v.
Then, the limit-state function is approximated by a linear (FORM) or
quadratic function (SORM) at the design point, often alternatively
termed as the most probable failure point (MPP). For example, in
FORM, the failure probability is approximated as

= −P Φ[ β]f (6)

where β is the reliability index, i.e. the shortest distance from the origin
of the standard normal space to the linearized failure surface, and Φ[·]
denotes the cumulative distribution function (CDF) of the standard
normal distribution. Using the discrete representation method de-
scribed above, limit-state functions defined for displacement or other
structural responses can be described in the space of standard normal
random variable v. For example, the instantaneous failure event Ef
defined for a linear structure subjected to the Gaussian input process in
Eq. (1) is given by
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where u0 is the prescribed threshold on the displacement response. In
this case, the reliability index β is computed from the geometric in-
terpretation of the limit-state surface as a closed form expression [15]
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It is noted that the limit-state function in Eq. (7) is linear in this
case, and thus the failure probability by Eq. (6), i.e. Pf=Φ[−β(tk,u0)]
does not introduce errors caused by function approximation or require
nonlinear optimization to find the design point. If the structure behaves
nonlinearly or the input process is non-Gaussian, one needs to use re-
liability methods such as FORM or SORM to compute the failure
probability approximately. Using this discrete representation method,
one can reduce the computational cost of the random vibration ana-
lysis, which should be repetitively performed during the optimization
processes to compute the instantaneous failure probability at each up-
dated set of design variables.

J. Chun et al. Structural Safety 76 (2019) 81–94

82



Download English Version:

https://daneshyari.com/en/article/9951903

Download Persian Version:

https://daneshyari.com/article/9951903

Daneshyari.com

https://daneshyari.com/en/article/9951903
https://daneshyari.com/article/9951903
https://daneshyari.com

