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A B S T R A C T

Source term estimation (STE) of atmospheric dispersion plays an important role in public safety, environmental
protection and many other application fields. In this paper, several new composite cost functions for STE using
hybrid genetic algorithm are proposed and compared using Nemenyi test based on 68 STE tasks from Prairie
Grass field experiment. Results show one of the new composite cost functions, named as WSD, has outstanding
performance in estimating both source location and emission rate. Then the patterns in STE results using different
cost functions are analyzed based on the 68 tasks mentioned above, which provides further insights into what
to expect from STE. At last, the relationship between composite cost functions and multi-objective optimization
is analyzed to facilitate the understanding of composite cost functions. To summarize, composite cost functions
such as WSD has the potential to achieve a better balance between sensitivity and robustness of cost functions
applied in STE, providing the most accurate estimates. Statistical algorithm comparison techniques like Nemenyi
test can help us better understand the characteristics and performance of specific settings in STE methods.

1. Introduction

Artificial Intelligence (AI) techniques like evolutionary algorithms
and swarm intelligence have been applied in many engineering prob-
lems (Ahmadi et al., 2014a, b, 2015). In this paper, we apply a hybrid
genetic algorithm to atmospheric source term estimation problems. The
releases of hazardous materials can be due to industrial accidents or
terrorist attacks (Gupta, 2002), both of which are big threats to public
safety and health. Source term estimation (STE) is to estimate the
location and strength of emission sources by available concentration
and meteorological observations. Information about the emission source
can help enhance the situation awareness of hazardous material releases
(Zheng and Chen, 2011; Zhang et al., 2017; Zhang and Huang, 2017).
Atmospheric STE has also been used to estimate fugitive releases from
oil and gas production (Albertson et al., 2016), municipal solid waste
landfills (Kormi et al., 2016) and urban natural gas pipelines (von
Fischer et al., 2017) to better understand the economic and climatic
impact of methane leakage. Therefore, STE is important for public
safety, economic development as well as environmental protection.

In a recent review by Bieringer et al. (2017), STE methods were
summarized into three general categories: forward modeling, inverse
modeling, and nonlinear optimization. Forward modeling method de-
termines the release rate by scaling the unit release from atmospheric
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transport and dispersion (AT&D) models using concentration observa-
tions (Flesch et al., 2005). Inverse modeling method reverses some of
the physical processes in AT&D models to obtain source parameters
(Bady et al., 2009). As the most popular one in the literature, non-
linear optimization based methods search for the best estimate of the
source parameters based on multiple runs of a forward AT&D model,
where model predictions are compared with sensor observations via a
discrepancy measure (i.e. cost function or likelihood function). In this
context, optimization method (Haupt et al., 2006; Thomson et al., 2007;
Cervone and Franzese, 2010; Ma et al., 2013; Li and Zhang, 2017) and
Bayesian inference method (Senocak et al., 2008; Keats et al., 2010;
Wang et al., 2015, 2017; Ristic et al., 2017) have many commonalities
and can be viewed as two subcategories of the general nonlinear
optimization approach. More elaborate discussion about different kinds
of STE methods along with their variations and applications is available
in several review articles (Rao, 2007; Redwood, 2011; Singh et al., 2015;
Hutchinson et al., 2017; Bieringer et al., 2017).

The optimal choice or theoretical justification of discrepancy mea-
sure in nonlinear optimization method is an important and challenging
task. The difficulty lies in the complex patterns contained in the
discrepancy between AT&D model predictions and sensor observations.
These complex patterns arise from randomness and uncertainties in
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Nomenclature

𝑛 Number of gas sensors
𝐳 Sensor observations, vector of length 𝑛: [𝑧1, 𝑧2,… , 𝑧𝑛],

mg/m3

𝐳̄ Mean value of observation vector 𝐳, mg/m3

𝐛 Predictions by forward AT&D model at the location of
𝑛 gas sensors: 𝐛 = [𝑏1, 𝑏2,… , 𝑏𝑛], mg/m3

𝐛̄ Mean value of prediction vector 𝐛, mg/m3

𝜽 Target parameter vector which we want to estimate,
including source location and emission rate

𝐷 (𝐛, 𝐳) Cost function describe the difference between obser-
vations 𝐳 and predictions 𝐛

(𝑥, 𝑦, 𝑧) Location of a point in 3D space, m
(𝑥0, 𝑦0, 𝑧0) Source location, m
𝐶𝑥,𝑦,𝑧(𝜽) Concentration at point (𝑥, 𝑦, 𝑧) predicted by forward

AT&D model using parameter 𝜽, g/m3

𝑄0 Source emission rate, g/s
𝑈 Wind speed, m/s
𝜙 Mean wind direction, degree
𝜎y Horizontal plume dispersion coefficient, m
𝜎z Vertical plume dispersion coefficient, m

turbulent dispersion processes, imperfect AT&D models or parameters
and noises in sensor measurements. Ideally, the discrepancy measure
should be both sensitive to target parameters of STE tasks and relatively
robust to the discrepancy caused by sensor noises, outliers and model
imperfectness.

In Wang et al. (2017), the impact of likelihood functions in Bayesian
STE method was investigated empirically. Approximate Bayesian Com-
putation (ABC) method was also investigated, where the discrepancy
measure is distance measure instead of likelihood function. Results show
that every likelihood function or distance measure has pros and cons on

different source parameters (e.g. lognormal likelihood function is supe-
rior in estimating source emission rate but inferior in estimating source
location compared with normal likelihood function). In this context,
an integration of STE results using different likelihood functions and
distance measures was encouraged to provide more robust estimates.
On the other hand, the importance and impact of cost functions in
optimization method has long been observed and investigated. Haupt
et al. (2006) studied the sensitivity of STE using GA-coupled receptor-
dispersion model to six cost functions based on synthetic data, finding
that the best cost function is problem dependent while the variability
due to the choice of cost functions is relatively small. Thomson et al.
(2007) presented STE results using three cost functions with different
regularization terms, where the impact of additive Gaussian noises
and concentration offsets are investigated to test each cost function,
showing that the best results are achieved by using a multiplicatively
regularized cost function which minimizes total emission rates. Cervone
and Franzese (2010) evaluated eight cost functions, where the properties
of each cost function are analyzed in detail. Ma et al. (2013) pointed out
that in optimization method, satisfactory STE results can be obtained
with a good selection of forward AT&D models and cost functions.

The key contribution of this work is the idea of composite cost
functions, especially those loose ones, which is general and useful in
optimization problems with many noisy observations. Although there
was an attempt to use composite cost functions (i.e. a combination of
two or more cost functions) in the literature (Haupt et al., 2006), the
idea of balancing the sensitivity and robustness of cost functions using
loose composite method has never been considered. Also, there is no
systematic investigation of composite cost functions based on multiple
STE tasks before.

In our work, several new composite cost functions are constituted
through the combination of two or more cost functions. To provide a
more robust evaluation of different cost functions, their performances
are compared systematically using all the 68 trials from the Prairie Grass
field dispersion experiment (Barad, 1958). Nemenyi test (Nemenyi,
1963) is used to integrate the STE results for different trials in the
Prairie Grass experiment and produce a comprehensive comparison in a
statistical manner. Then the patterns in the STE results using those cost

Fig. 1. The flow diagram of GA–PS method.
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